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A B S T R A C T

AIGC (Artificial Intelligence Generated Content) is a novel AI technology that encompasses tasks such as text-
to-image generation, text-to-text generation, and image-to-text generation. In the process of child language
acquisition, some children may face challenges, exhibiting symptoms such as delayed language development,
limited vocabulary, and poor expressive ability. To address this issue, the "Look and Speak" method can be
employed, which allows children to learn and express language by observing images. In our paper, we build
a dataset, named CODP-1200, benchmark for assisting in children language acquisition, which is curated and
augmented using AIGC techniques. The dataset consists of 1200 children cartoon images paired with 6000
corresponding sentences that are used to describe them. Initially, we carefully curated and selected twelve
Chinese language textbooks, ranging from the first to the sixth grade, as part of the primary compulsory
education curriculum, to construct the foundational corpus. Based on the original data, two famous large
language models ChatGPT and SparkDesk are employed for data augmentation, subsequently. Finally, the
ERNIE-ViLG is utilized to generate children’s style images corresponding to the textual descriptions. In addition,
based on our proposed dataset, we propose a benchmark approach called DDMXCap, which is a diffusion-
based model for image captioning, specifically from image to text. Experimental results demonstrate that our
method achieves promising performance in children’s image captioning tasks and provides a standardized
learning process for child language acquisition. The implementation codes for our approach and build dataset
are available at https://github.com/Leng-bingo/Chinese-Child-Captions.
1. Introduction

During the language acquisition stage for the child, the oral de-
scription of pictures plays a crucial role [1]. Although most children
can naturally acquire language within a certain age range, there are
still some children who experience delays in language development or
face language barriers. Through comprehension of visual information,
children utilize their acquired vocabulary to describe the content of
the images they perceive, thereby enhancing their linguistic skills.
Unfortunately, children with visual impairments encounter challenges
in effectively receiving visual elements due to their limited visual
acuity [2]. With the rapid development of artificial intelligence, new
possibilities have emerged for children’s language education, such as
the use of image captioning methods to support language acquisition.
Image captioning has emerged as a technology that converts visually
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extracted features from images by computers into high-level semantic
information. It can assist children with visual impairments in learning
to describe visual materials orally [3]. During the application of AIGC
assisted technology, a key issue is how to evaluate the effectiveness
of outputs generated by artificial intelligence. An obvious potential
answer for this problem is a public dataset. It can serve as a basis
for related studies. In particular, evaluating the actual performance
of different AIGC assisted techniques is valuable for selecting a more
suitable solution.

In recent years, the Flickr8K and Flickr30K datasets [4] are com-
piled from Flickr, a photo-sharing website owned by Yahoo. These
datasets comprise a wide range of images, encompassing various sub-
jects such as people and landscapes, with 8000 and 30,000 images
respectively. The MS COCO Caption dataset is an extension of MS COCO
(Microsoft Common Objects in Context) dataset. [5]. It uses Amazon’s
vailable online 29 December 2023
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Mechanical Turk service to generate descriptive captions for images.
It has gained significant popularity as a large-scale image captioning
benchmark, including 330,000 images accompanied by diverse and
comprehensive annotations.

However, there is still a gap in the availability of dedicated datasets
specifically designed for children’s image captioning. For instance, the
current datasets are primarily sourced from the internet and mainly
consist of categories such as animals, flowers, trees, buildings, and
street scenes. These datasets have few image related to children daily
life or preschool knowledge. Furthermore, the image style of these
datasets are realistic style, rather than a cartoon style that is more
conducive to children’s understanding.

To address these issues, we build a multi-scene, multi-semantics
dataset specifically designed for children, named CODP-1200, it con-
tains 1200 cartoon images. The dataset consists of sentences extracted
from twelve Chinese language textbooks from the compulsory educa-
tion curriculum spanning grades one to six. The corresponding images
are generated in a children’s cartoon painting style using the ERNIE-
ViLG [6]. The CODP-1200 dataset is specifically designed for young
children, incorporating a combination of volunteer annotation, large
language models (ChatGPT, SparkDesk), and augmented translation
techniques. This approach ensures the generation of age-appropriate
text, aligning with the cognitive abilities of children.

Additionally, we also propose a diffusion-based image captioning
approach, called Discrete Diffusion Model with X-Linear Attention for
Image Captioning(DDMXCap). By integrating the X-Linear attention
module into the diffusion model, it facilitates enhanced focus on re-
gions of interest, consequently aiding visually impaired children in
acquiring more precise information from the image. The scores of
BLEU-1, BLEU-4, METEOR, ROUGL-L and CIDEr of DDMXCap on our
proposed CODP-1200 are 54.16, 26.62, 24.63, 47.36, and 151.12. The
main contributions of this study are summarized as follows:

• We build a new dataset for Children Oral Description of Picture
(CODP-1200). Each unit in the dataset consists of two similar
cartoon images and five corresponding image description sen-
tences. The creation of this dataset addresses the existing gap in
child image captioning. And it offers valuable resources for study-
ing visual restoration in children. By conducting experiments on
our dataset, we have verified its quality and effectiveness. The
code for these datasets can be found at https://github.com/Leng-
bingo/Chinese-Child-Captions.

• We propose a novel approach, Discrete Diffusion Model with X-
Linear Attention for Image Captioning (DDMXCap), which incor-
porates an X-Linear attention module to capture image features
that are highly correlated with the corresponding textual descrip-
tions. By leveraging this approach, we are able to generate more
accurate and precise image captions.

• The proposed method achieved a BLEU-4 score of 26.62 and a
CIDEr score of 151.12 on the CODP-1200 dataset. The scores are
improved by 0.77 and 31.02 compared to the baseline methods.

. Related work

.1. Generative model

Recently, Jonathan et al. [7] proposed the powerful Denoising Dif-
usion Probabilistic Models (DDPM), followed by DDIM [8], Semantic
uidance Diffusion [9], GLIDE [10], and DALL-E-2 [11]. These models
ade significant contributions to the field of image generation and

radually replaced the generative models previously represented by
AN [12]. Karras et al. [13] proposed Style-GAN, which can auto-
atically learned, unsupervised separation of high-level attributes and

tochastic variation in the generated images. Liu et al. [9] proposed
novel image generation method that incorporates semantic diffusion
2

uidance to enhance the quality and controllability of image generation
by leveraging semantic information. In this approach, the semantic
vector is combined with random noise, and the diffusion process is
systematically applied to propagate the vector while calculating the
similarity between the generated image and the semantic vector. This
similarity measure guides the subsequent iterations of the process.

Sutskever et al. [14] proposed an end-to-end sequence training
method that makes minimal assumptions about the sequence structure.
They employed multiple layers of LSTM to map the input sequence
into a fixed-dimensional vector, and then used another deep LSTM to
decode the target sequence from the vector. BERT [15] is designed to
pretrain deep bidirectional representations of unlabeled text by jointly
conditioning on left and right context at all layers. This distinguishes
BERT from previous language representation models. Brown et al. [16]
proposed GPT-3. For all tasks, GPT-3 is applied without any gradi-
ent updates or fine-tuning, with tasks and few-shot demonstrations
specified purely via text interaction with the model. As a result, fine-
tuning the pretrained BERT model by adding an output layer alone
allows the development of state-of-the-art models for various tasks. It
includes question answering and language inference, without requiring
significant modifications to the task-specific architecture.

2.2. Image captioning dataset

Currently, the field of image captioning benefits from the availabil-
ity of several datasets, including the Flickr8K and Flickr30K datasets
[4], as well as the MS COCO Captions dataset [5]. These datasets consist
of diverse images capturing complex scenes featuring people, animals,
and everyday objects. The MS COCO Captions images were gathered by
searching for pairs of 80 object categories and various scene types on
Flickr. The goal of the MS COCO image collection process was to gather
images containing multiple objects in their natural context. Given the
visual complexity of most images in the dataset, they posed an inter-
esting and difficult challenge for image captioning. The text generation
process involved leveraging Amazon’s Mechanical Turk service, where
human annotators generate a minimum of five captions for each image,
resulting in a comprehensive collection of approximately 1.5 million
captions. On the other hand, Flickr serves as an image search website
that retrieves relevant images based on the provided input information.
The Flickr datasets consisted of everyday activities, events and scenes.
Followed annotation guidelines and implemented quality controls to
correct spelling mistakes, remove ungrammatical or non-descriptive
sentences, as well as eliminate inconsistencies in the annotations, as
used in Hodosh Hodosh et al. [17].

VizWiz [18] is a mobile application project designed to facilitate
real-time assistance for visually impaired individuals by recruiting
sighted workers. Through this application, users can capture images
using their smartphones, ask questions, and receive multiple answers.
By leveraging the power of the internet, individuals with visual impair-
ments gain access to information that would otherwise be inaccessible
to them, such as reading menus, identifying canned food, or deter-
mining the availability of free benches in a park. The VizWiz-Captions
dataset [19] is a dedicated dataset specifically designed to address
the needs of visually impaired individuals. All images in this dataset
are collected from actual blind users utilizing the VizWiz, ensuring
its relevance to the users’ real-world requirements and encompassing
various practical and intricate issues they encounter. Trained personnel
annotate the image captionings, and metadata for each image is also
collected, indicating the presence of text and the severity of image
quality issues. This comprehensive dataset enables systematic analysis
based on these factors.

The Conceptual Captions (CC) dataset [20] is a collection of image
URL, caption pairs used for training and evaluating machine learning
image captioning systems. The dataset consists of two versions: CC3M
with approximately 3.3 million images and CC12M with approximately
12 million images. It is automatically gathered from the web using

a simple filtering process to collect weakly related descriptions. In
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contrast to the images in the MS COCO Captions dataset, the images
in the Conceptual Captions dataset are sourced from the web along
with their original descriptions, representing a wider range of styles.
However, it should be noted that the availability of images is not
guaranteed since only image URLs are provided, and the quality of the
accompanying text cannot be guaranteed.

2.3. Image captioning

Image captioning serves as a crucial link between images and text,
making it a prominent research area in the field of artificial intel-
ligence. It provides great assistance to visually impaired individuals,
enabling them to observe information in the images. By image caption-
ing, visually impaired individuals can enhance their understanding of
images and enrich their visual experience.

Initially, Vinyals et al. [21] drew inspiration from machine transla-
tion and adopted an encoder–decoder architecture for image caption-
ing. Later, Kelvin et al. [22] further enhanced the model by utilizing
a combination of CNN and long short-term memory (LSTM) as the
encoder and decoder, respectively. Anderson et al. [23] made signif-
icant contributions by integrating object detection techniques into the
field of natural image captioning. They proposed a novel approach
that combined Bottom-Up visual feed-forward attention with Top-Down
non-visual or task-specific contextual attention. Qin et al. [24] intro-
duced a novel approach called Look Back and Predict Forward (LBPF)
consisting of two main components. The two probabilities generated by
the model are combined together to predict the current word.

2.3.1. Transformer-based image captioning
Due to the inherent limitations of RNN models’ sequential nature,

there is a drawback in effectively retaining distant past information
within the sequence. While LSTM models can partially mitigate the
long-range dependency problem in RNN, they have a limited memory
capacity for information storage. Ashish et al. [25] proposed self-
attention mechanisms as a replacement for recursion and convolution,
addressing the limitation of RNN and its variants in parallel computa-
tion. Lu et al. [26] proposed an adaptive attention module capable of
dynamically determining the focus of each decoding stage on specific
regions of an image. Chen et al. [27] proposed a spatial and channel at-
tention mechanism that integrates features from various spatial regions
and channels in an image. Pan et al. [28] proposed an optimization
technique for the attention module utilizing bilinear pooling. Cornia
et al. [29] proposed a natural image captioning model based on the
Transformer architecture, integrating the Meshed-Memory structure. It
incorporates image regions and textual features, utilizing memory slots
for keys and values in self-attention to add high-level information and
prior knowledge.

2.3.2. Diffusion-based image captioning
The Denoising Diffusion Probabilistic Models (DDPM) are initially

proposed by Jonathan et al. [7]. The DDPM consists of two main
phases: the forward process, also referred to as the diffusion process,
which gradually transforms the original image into a fully noisy im-
age, and the inverse process, known as the denoising process, which
progressively restores the noisy image to its original state. Regardless
of the direction (forward or backward), the process is modeled as a pa-
rameterized Markov chain. To accelerate the generation process, Song
et al. [8] proposed the Denoising Diffusion Implicit Models (DDIM).
DDIM shares the same training objective as the DDPM but does not
impose the Markov chain constraint on the diffusion process. It allows
the smaller sampling steps during generation.

Xu [30] proposed an image captioning approach that combines
the diffusion model with CLIP. By introducing the diffusion model, it
becomes possible to generate image captionings without the need for
explicit alignment between images and texts. It leverages the output of
the CLIP model as the initial state, which undergoes gradual diffusion
3

through multiple iterations. In each iteration, the diffusion model
randomly generates text and updates the state based on this text and
the current state. Austin et al. [31] proposed a structured denoising
diffusion model based on a discrete-space formulation. Li et al. [32]
proposed a text generation model based on the diffusion model to
achieve controllability. To tackle the issues of minimizing irrelevant
content and enhancing fluency, it takes a random noise vector as input
and utilizes a diffusion process to progressively generate text with
targeted semantics.

3. CODP-1200 dataset

The deficiency of existing benchmark datasets in the number of
images and scene types and diversity of descriptions hinders the ad-
vancement of novel captioning approaches. Therefore, we build the
CODP-1200 dataset, some samples in CODP-1200 are shown in Fig. 1.
It is a Chinese dataset that consists of images in a children’s cartoon
style along with their corresponding content descriptions. The CODP-
1200 dataset contains 600 units, consisting of 1200 images and 3000
sentences. Each unit consists of five semantically similar sentences
and two images generated based on the corresponding semantics. The
resolution of the images is 1024 × 1024. All text annotations in the
dataset are generated through a voluntary annotation process involv-
ing three experienced volunteers. These annotations are subsequently
refined through rewriting and data augmentation using large language
models, including ChatGPT and SparkDesk. We conduct this process
to ensure the dataset’s textual data exhibited both quality and diver-
sity. The images in the dataset are generated using the ERNIE-ViLG
from Baidu’s Wenxin AI model suite [6]. This model, given relevant
prompts, is capable of generating cartoon-style images that match the
provided descriptions. The CODP-1200 dataset offers several advan-
tages compared to currently available benchmark datasets. Firstly, our
texts are sourced from twelve Chinese language textbooks from the
compulsory education curriculum spanning grades one to six, which
gives the dataset a sense of authority, universality, and makes it more
appealing to children. Secondly, it covers a broader range of age-
appropriate scenarios, catering to the needs of children across different
age groups. The CODP-1200 dataset includes a series of images with
related descriptions, aimed at allowing children to describe images
through observation. This process not only promotes children’s visual
perception ability but also helps children enhance vocabulary accu-
mulation, improve semantic understanding and expression, and foster
creative thinking. Additionally, the dataset exhibits a rich and diverse
vocabulary in its descriptions, providing a wide range of textual repre-
sentations. The methodology for constructing the dataset is illustrated
in Fig. 2. It can be accessed through the following link: https://github.
com/Leng-bingo/Chinese-Child-Captions. In the following sections, we
will provide a detailed overview of the dataset’s creation process and
analysis results.

3.1. Sentence collection

Considering the target audience of the dataset as children, we
selected Chinese textbooks related to them as the source for text
collection. To ensure that the selected sentences are understandable
for children and guarantee the richness and diversity of the sentences,
we manually screened and selected twelve Chinese language textbooks
from the first to the sixth grade of primary education to constitute the
basic corpus. A total of 600 sentences are collected, with an average
of 50 sentences per textbook. The details are shown in Table 1. These
sentences cover different scenarios, characters, and plots, ensuring they
are suitable for all children. In the selection process, we carefully
eliminated redundant, meaningless words and potentially confusing
interference terms to ensure that each sentence accurately conveys
the intended information. Additionally, we moderately modified and
polished the sentences to make them more concise, clear, and easy
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Fig. 1. Examples of the CODP-1200. Line 1 presents the original text extracted from twelve Chinese language textbooks from the compulsory education curriculum spanning grades
one to six. Line 2 and line 3, volunteers A and B respectively provided rewritten versions of the original text. Line 4 represents the result of translating the text from Chinese to
English using the Baidu Translation API, followed by translating it back to Chinese. Line 5 and line 6 consist of rewrites generated by the large language models ChatGPT and
SparkDesk, respectively.
Fig. 2. Process of dataset creation.
to understand. This laid a solid foundation for the construction of
subsequent datasets. Through this text selection and polishing process,
we ensured the collection of high-quality sentences from the textbooks.
These sentences not only hold educational significance but also engage
children’s interest and curiosity. They establish a robust basis for con-
structing the dataset and provide substantial support for further tasks
and research endeavors.

3.2. Sentence augmentation with AIGC

After the first step of sentence collection, we successfully gathered
600 eligible sentences from twelve Chinese language textbooks from
the compulsory education curriculum spanning grades one to six. To
4

further enrich the dataset, we generate four alternative expressions for
each sentence. We employ various methods to achieve this objective.

Firstly, volunteers rewriting the collected sentences from the initial
step to obtain new sentences with similar meanings. It involves careful
thought and deliberate selection to ensure that the new sentences are
semantically similar to the original ones but have differences in ex-
pression. Secondly, we use the large language models such as ChatGPT
and SparkDesk for sentence augmentation. ChatGPT, based on the GPT
(Generative Pre-trained Transformer) architecture, is employed in data
augmentation tasks to generate new text data that is grammatically
correct and highly relevant. SparkDesk focuses on creating text that
is rich in emotion and creativity, and its generated results may be
more imaginative and emotional. Utilizing these two methods for text
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Table 1
Selection of textual details.

Textbooks Number of sentences

First grade First semester 49
First grade Second semester 48
Second grade First semester 56
Second grade Second semester 44
Third grade First semester 55
Third grade Second semester 72
Fourth grade First semester 41
Fourth grade Second semester 66
Fifth grade First semester 62
Fifth grade Second semester 35
Sixth grade First semester 48
Sixth grade Second semester 24

Total 600

data augmentation can provide the dataset with richer semantic ex-
pressions. Lastly, we employ the translation enhancement feature of
Baidu Translation API. Specifically, we translated the Chinese sentences
into English and then translated them back into Chinese. This bidirec-
tional translation process helped us generate additional variations of
sentences, where each sentence have the same semantics but differed
in specific expressions.

We ultimately five semantically equivalent but slightly different
expressions for each sentence. This diverse collection of sentences
provides broader coverage for our dataset, enabling models to have a
more comprehensive and flexible understanding and generation of text.

3.3. Image generation with ERNIE-ViLG

All the images in this dataset are generated by the ERNIE-ViLG [6],
which is a large-scale pre-trained generative model designed to handle
multimodal tasks, such as understanding textual information and gen-
erating images in the corresponding style based on that understanding.
Specifically for generating children’s style images that correspond to
text descriptions, ERNIE-ViLG can leverage its pre-trained capabilities
to comprehend the content, style, and emotions described in the text
and transform it into colorful, concise, or cartoon-like child-friendly
images.

ERNIE-ViLG adopts an autoregressive generation mode, which en-
ables unified modeling of image and text generation tasks, thereby
capturing semantic alignment between modalities and improving the
effectiveness of bidirectional image–text generation tasks. It possesses
powerful capabilities to generate images based on natural language
intelligently. Users can freely input descriptive text without content re-
strictions, and ERNIE-ViLG can accurately understand the descriptions
and support image generation optimization through the configura-
tion of hyperparameters, thus achieving stable and controllable image
generation quality.

Firstly, we feed the first volunteerly rewritten sentence from each
data unit into the ERNIE-ViLG model. The model generated four cor-
responding images based on the descriptive text. Subsequently, we
meticulous volunteer selection and chose the two images that best
matched the description to be saved. Through this construction pro-
cess, we ensured a high level of consistency and similarity between
the images and the descriptive text in the dataset. By combining the
generative capacity of the ERNIE-ViLG model with the expertise of
volunteer selection, we are able to filter out the highest quality and
most appropriate images, thereby ensuring the quality and accuracy of
the dataset.

By utilizing the ERNIE-ViLG and volunteer selection, we ensure
a close correspondence between the images and descriptive text in
the dataset. The construction of this dataset not only offers high-
quality image data for model training and research but also fosters
5

advancements in the domains of image generation and text generation.
Table 2
Characterization of our CODP-1200 dataset. The table presented below showcases the
average counts of image-to-text descriptions for each image in the dataset, along
with the corresponding number of Chinese characters(words), nouns(n), verbs(v),
adjectives(adj), and numerals(num) contained in the descriptions. The first six rows
pertain to the statistics derived from individual Chinese language textbooks, while the
final row provides an overview of the dataset’s overall statistics.

Average count per image

words n v adj num

First grade 11.6 2.3 1.0 0.7 0.8
Second grade 11.1 2.3 1.1 0.7 0.8
Third grade 11.1 2.6 1.1 0.7 0.7
Fourth grade 10.8 2.3 1.0 0.6 0.8
Fifth grade 10.7 2.2 1.1 0.6 0.9
Sixth grade 11.2 2.4 1.1 0.8 0.8

CODP-1200 11.3 2.3 1.1 0.7 0.8

All count for all images

words n v adj num

First grade 5,609 1,113 491 317 393
Second grade 5,584 1,141 534 347 388
Third grade 7,758 1,667 705 510 423
Fourth grade 5,760 1,236 560 311 412
Fifth grade 5,181 1,048 521 299 426
Sixth grade 4,047 849 404 286 277

CODP-1200 33,939 7,054 3,215 2,070 2,319

3.4. Dataset analysis

Quality of Images. We initially assessed the quality of all descrip-
tive texts by examining their semantic similarity, clarity, and non-
repetitiveness within each unit. Subsequently, we evaluated the images
to ensure they effectively conveyed the content described in the texts.
It is crucial to consider that the images are generated by artificial
intelligence and may possess certain flaws. Additionally, as the dataset
is specifically curated for children, it is imperative that the generated
image content aligns with their perspective. Some images may exhibit
poor quality due to inappropriate colors (e.g., predominantly black or
dark colors) or contain elements beyond children’s comprehension. we
conducted a thorough evaluation of image quality with the assistance
of five volunteers who assessed both content and artistic style. The
majority of images are deemed of sufficient quality, featuring content
and artistic style suitable for children. Only a negligible number of im-
ages are considered to have insufficient quality to match the descriptive
texts. Nevertheless, humans are still able to identify the key elements
described in the texts within the images.

CODP-1200 Dataset Characterization. We quantified various char-
acteristics of the descriptive texts, including their length as well as
the quantities of objects, descriptors, actions, and relationships they
encompass. To accomplish this, we employed the Jieba Chinese word
segmentation tool to calculate the average number of words per de-
scription, as well as the average and total numbers of nouns, adjectives,
verbs, numerals, and spatial relational words present in each sentence.
The characterization of our CODP-1200 dataset is presented in Ta-
ble 2. It reveals that the typical sentence consists of approximately
11 Chinese characters and includes two to three objects (nouns), one
action (verb), one descriptor (adjective), one quantifier (numeral), and
one relationship (spatial relational word). Illustrative examples with
similar structures are ‘‘A boy is earnestly reading under the lamp’’
and ‘‘A sturdy tree is adorned with an ancient bronze bell’’. These
findings demonstrate the dataset’s capacity to encompass a wide range
of concepts, incorporating over 33,000 unique words. As a result, it
provides an effective solution for child image captioning tasks.

4. Discrete Diffusion Model with X-Linear Attention for Image
Captioning

In this paper, we propose a novel image captioning approach called
DDMXCap (Discrete Diffusion Model with X-Linear Attention for Image
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Fig. 3. Overview of the proposed DDMXCap, consisting of a DDM sub-network, an image encoder such as CLIP-based ones, and a transformer-based sub-network. (a) During
training, the caption is tokenized and gradually converted to [𝑚𝑎𝑠𝑘] by adding noise that depends on the sampled step 𝑡. Then, these noisy tokens are fed into a transformer model
for clean text token prediction, together with image features. The predicted tokens are used for loss calculating together with GT. The [𝐶𝐿𝑆] token of the CLIP model is used to
predict the length 𝑁𝐿 of the caption. (b) During inference, all [𝑚𝑎𝑠𝑘] tokens 𝑋𝑇 is the input and the caption length 𝑁𝐿 is first predicted. For each step 𝑡, we have three inputs for
the transformer’s Adaptive LayerNorm layer: 𝑡 depending on 𝑁𝐿 and the total noise length 𝑇 , image features, and previous text tokens 𝑋𝑡−1. We retain the token with the highest
score each time and gradually infer the initial caption 𝑋0.
Captioning). The CLIP pre-trained model is used in our approach for
image encoding, and the alignment between image and text features
is improved by incorporating the X-Linear attention module into the
discrete diffusion model for image captioning. The application of diffu-
sion models in children’s image captioning is a novel approach. The
CLIP image encoder allows the model to learn from a robust and
general foundation of image–text alignment. The use of the X-Linear
attention module is more advanced and efficient than traditional atten-
tion mechanisms when processing and analyzing complex, non-linear
relationships in images. Combined with bilinear attention to capture
higher-order interactions, it facilitates the inference of joint represen-
tations between image features and hidden states, promoting sentence
generation. Fig. 3 provides an overview of the overall architecture of
our proposed DDMXCap.

In this approach, each encoded token undergoes a gradual prob-
abilistic transformation into a mask token, allowing for the addition
of noise. To enhance effective attention between image features and
text, we employ X-Linear attention. The approach is trained using both
image features and noisy text. Image features are extracted using the
pre-trained CLIP model, where the [𝐶𝐿𝑆] token is used as a feature for
predicting the length of the corresponding text. To predict the token
length, a simple MLP is employed. Based on the predicted text length, a
sequence of masks is generated, and words with the highest confidence
scores are selected. Noise is iteratively removed from the text, with the
text length serving as the diffusion step length 𝑇 .

4.1. Noising and denoising process

The diffusion process involves the gradual addition of Gaussian
noise to the initial data until it becomes entirely noise. The traditional
continuous diffusion model is a parameterized Markov chain that pro-
gressively increases noise to generate training samples. In contrast, the
discrete diffusion model applies noise processing at the text level by
utilizing a mask token. Through a series of 𝑇 steps with a certain
probability, the text is transformed into noise consisting entirely of
mask tokens.

Each word in the caption is represented as a discrete state denoted
by 𝑥. The noise corresponding to the step with a step size of 𝑡 is denoted
as 𝑥𝑡. The diffusion process consists of a total of 𝑇𝑡 steps, and in each
step, noise is added to the data 𝑥𝑡−1 obtained in the previous step.
Specifically, each token has a probability of 𝜖𝑡 to transition to a special
state [𝑚𝑎𝑠𝑘]. If 𝑥 is not a [𝑚𝑎𝑠𝑘] token, the transformation probability
6

𝑡−1
from Step 𝑡 − 1 to Step 𝑡 is defined as follows:

𝑝
(

𝑥𝑡 ∣ 𝑥𝑡−1
)

=

⎧

⎪

⎨

⎪

⎩

𝜂𝑡, 𝑥𝑡 = 𝑥𝑡−1
𝜖𝑡, 𝑥𝑡 = [ mask ]

1-𝜖𝑡 − 𝜂𝑡, otherwise
(1)

In other words, each token 𝑥𝑡−1 is assigned probabilities 𝜖𝑡 for being
replaced by a special marker [𝑚𝑎𝑠𝑘], 𝜂𝑡 for remaining unchanged, and
𝜃𝑡 = 1 − 𝜖𝑡 − 𝜂𝑡 for being replaced by any other token from the vocab-
ulary except for [𝑚𝑎𝑠𝑘]. If 𝑥𝑡−1 is the [𝑚𝑎𝑠𝑘] token, the transformation
probability from Step 𝑡 − 1 to Step 𝑡 is defined as:

𝑝
(

𝑥𝑡 ∣ 𝑥𝑡−1
)

=

{

1, 𝑥𝑡 = [ mask ]

0, otherwise
(2)

By employing the aforementioned noise addition method, when the
diffusion step size 𝑇 is sufficiently large, all encoded word tokens are
replaced with a special token, denoted as [𝑚𝑎𝑠𝑘].

The denoising process refers to the iterative removal of noise from
a random noise sequence in order to restore the original signal. We
initiated the process by using a noise sequence composed of [𝑚𝑎𝑠𝑘] ele-
ments. Then, we applied a Transformer network and the X-Linear atten-
tion mechanism to perform reverse projection denoted as 𝑝(𝑥𝑡−1 ∣ 𝑥𝑡, 𝑦),
where 𝑦 represents the image features extracted from the fine-tuned
CLIP pre-trained model’s image encoder. The utilization of X-Linear
attention helped identify regions that exhibited strong correspondence
between the text and image features, thereby enhancing the accuracy
of caption generation. Additionally, we employed a sine function to
encode the position of each time step 𝑡.

𝑝 = 𝑡 ∗ stepscale∕𝑇 , (3)

PE𝑖 =

{

sin
(

𝑝∕100002𝑖∕𝑑model
)

, 𝑖 < 𝑑model∕2

cos
(

𝑝∕100002𝑖∕𝑑model
)

, 𝑖 ≥ 𝑑model∕2
(4)

where stepscale is the wavelength, i.e., 8000 in our experiments, and
𝑑model is the hidden dimension.

4.2. Training and inference

The traditional continuous diffusion model recovers initial informa-
tion by predicting the noise distribution, whereas the discrete diffusion
model performs denoising at the sentence level using masking. Taking
inspiration from DDSM [31] and DDCap [33], we modify the step-by-
step process from Step 𝑡 to 𝑡 − 1 to directly compute the initial text
at Step 0, combined with image features for training. An overview of
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Fig. 4. A schematic diagram of X-Linear attention block plus ELU to capture infinity
rder feature interactions.

he overall process is depicted in Fig. 3. In the experiments, we set
he maximum length of each caption to 20, which corresponds to the
aximum step of 20. The process from Step 𝑡 − 1 to 𝑡 is as follows:

(𝑥𝑡 ∣ 𝑥𝑡−1) = Cat(𝑥𝑡; 𝑝 = 𝑥𝑡−1𝐐𝑡) (5)

here Cat(𝑥; 𝑝) represents a categorical distribution over the one-hot
ow vector 𝑥. The transition vector 𝐐 is defined as follows: [𝐐𝑡]𝑖𝑗 =
(𝑥𝑡 = 𝑗 ∣ 𝑥𝑡 − 1 = 𝑖). The process from Step 0 to 𝑡 is as follows:
(

𝑥𝑡 ∣ 𝑥0
)

= Cat
(

𝑥𝑡; 𝑝 = 𝑥0𝐐𝑡

)

, 𝐐𝑡 = 𝐐1 …𝐐𝑡 (6)

In summary, we can train the model by introducing noise to the
initial text and combining it with image features.

𝑞
(

𝑥𝑡−1 ∣ 𝑥𝑡, 𝑥0, 𝑦
)

=
𝑞
(

𝑥𝑡 ∣ 𝑥𝑡−1, 𝑥0, 𝑦
)

𝑞
(

𝑥𝑡−1 ∣ 𝑥0, 𝑦
)

𝑞
(

𝑥𝑡 ∣ 𝑥0, 𝑦
)

= Cat

(

𝑥𝑡−1; 𝑝 =
𝑥𝑡𝐐⊤

𝑡 ⊙ 𝑥0𝐐𝑡

𝑥0𝐐𝑡𝑥⊤𝑡

) (7)

During the inference stage, the [𝐶𝐿𝑆] token of the CLIP model is
irst utilized as a feature to predict the length of the corresponding
mage caption. A simple MLP structure is used to predict the length 𝑇

of the caption. Then, starting from the [𝑚𝑎𝑠𝑘] token 𝑥𝑇 of length 𝑇 , the
trained denoising network is applied, and the image feature 𝑝𝜃(𝑥0 ∣ 𝑥𝑡, 𝑦)
is combined to directly predict 𝑥0. Next, by adding the noise from Step
𝑡 − 1 to the predicted original text 𝑥0 through a Markov chain, 𝑥𝑡−1 is
obtained:
𝑞
(

𝑥𝑡−1 ∣ 𝑥𝑡, 𝑦
)

≈ E𝑥0∼𝑝𝜃(𝑥0 ∣𝑥𝑡)𝑞
(

𝑥𝑡−1 ∣ 𝑥𝑡, 𝑥0, 𝑦
)

∝ E𝑝𝜃(𝑥0 ∣𝑥𝑡)𝑞
(

𝑥𝑡 ∣ 𝑥𝑡−1
)

𝑞
(

𝑥𝑡−1 ∣ 𝑥0
)

= 𝑥𝑡𝐐𝑇
𝑡 ⋅ 𝑥0𝐐𝑡−1

(8)

In summary, after 𝑇 steps, we can gradually restore the original text
𝑥0.

4.3. X-linear attention

Traditional attention modules calculate in calculating interactions
between different components, but their limitation lies in relying solely
on first-order feature interactions, which hampers their capacity for
7

intricate image caption reasoning. To overcome this limitation, we
draw inspiration from the success of bilinear pooling in tasks like fine-
grained visual recognition and visual question answering. We propose
a unified attention module for image captioning called X-Linear at-
tention, which is constructed using a single X-Linear attention block,
following the approach of X-LAN [28]. It enhances the representation
power of features by capturing high-order interactions and facilitates
the inference of the joint representation of image features and hidden
states, as showed in Fig. 4.

Specifically, suppose a query 𝐐 ∈ R𝐷𝑞 , a set of keys 𝐊 = {𝐤𝑖}𝑁𝑖=1,
nd a set of values 𝐕 = {𝐯𝑖}𝑁𝑖=1, where 𝐤𝑖 ∈ R𝐷𝑘 and 𝐯𝑖 ∈ R𝐷𝑣 represent

the 𝑖th key/value pair. To facilitate the interaction between the query
and keys, the X-Linear attention module employs bilinear pooling. This
operation produces joint bilinear query–key representations, denoted
as 𝐁𝑘

𝑖 ∈ R𝐷𝐵 , for each query–key pair:

𝐁𝑘
𝑖 = 𝜎

(

𝐖𝑘𝐤𝑖
)

⊙ 𝜎
(

𝐖𝑘
𝑞𝐐

)

(9)

In the given equation, the embedding matrices 𝐖𝑘 ∈ R𝐷𝐵×𝐷𝑘 and
𝐖𝑘

𝑞 ∈ R𝐷𝐵×𝐷𝑞 represent the embedding matrices. The ReLU unit is
denoted by 𝜎, and the symbol ⊙ signifies element-wise multiplica-
tion. Consequently, the bilinear query–key representation 𝐁𝑘

𝑖 effectively
captures the second-order feature interactions between query and key.

Next, based on all the bilinear query–key representations
{𝐤𝑖}𝑁𝑖=1𝐵

𝑘
𝑖
𝑁
𝑖=1, we derive two types of bilinear attention distributions to

effectively capture spatial and channel information across all values.
To accomplish this, each bilinear query–key representation undergoes
projection using two embedding layers, resulting in the generation
of a spatial bilinear attention distribution. This distribution is then
normalized using a softmax layer.

𝐁′𝑘
𝑖 = 𝜎

(

𝐖𝑘
𝐵𝐁

𝑘
𝑖
)

, 𝑏𝑠𝑖 = 𝐖𝑏𝐁′𝑘
𝑖 , 𝜷𝑠 = sof tmax (𝐛𝑠) (10)

where 𝐖𝑘
𝐵 ∈ R𝐷𝐶×𝐷𝐵 and 𝐖𝑏 ∈ R1×𝐷𝑐 are embedding matrices. The

transformed bilinear query–key representation is denoted as 𝐁′𝑘
𝑖 , and

𝑏𝑠𝑖 represents the 𝑖th element in 𝐛𝑠. Each element 𝛽𝑠𝑖 in 𝛽𝑠 represents
the normalized spatial attention weight for each key/value pair. Ad-
ditionally, we incorporate the squeeze-and-excitation operation on all
the transformed bilinear query–key representations {𝐁′𝑘

𝑖 }𝑁𝑖=1 to measure
channel-wise attention. Specifically, we aggregate the transformed bi-
linear query–key representations using average pooling, resulting in a
global channel descriptor 𝐁.

𝐁 = 1
𝑁

𝑁
∑

𝑖=1
𝐁′𝑘
𝑖 (11)

Afterward, a sigmoid gating mechanism is applied to the global
channel descriptor 𝐁, resulting in the generation of the channel-based
attention distribution 𝛽𝑐 through the subsequent excitation operation.

𝐛𝑐 = 𝐖𝑒𝐁, 𝜷𝑐 = sigmoid (𝐛𝑐 ) (12)

where 𝐖𝑒 ∈ R𝐷𝐵×𝐷𝑐 is embedding matrix.
Finally, the X-Linear attention block accumulates the enhanced

bilinear values from both spatial and channel bilinear attention to
generate the attentional value feature �̂�.

�̂� = 𝐹𝑋− Linear (𝐊,𝐕,𝐐) = 𝜷𝑐 ⊙
𝑁
∑

𝑖=1
𝜷𝑠
𝑖𝐁

𝑣
𝑖

𝐁𝑣
𝑖 = 𝜎

(

𝐖𝑣𝐯𝑖
)

⊙ 𝜎
(

𝐖𝑣
𝑞𝐐

)

(13)

where 𝐁𝑣
𝑖 represents the enhanced value of the bilinear pool with

respect to the query 𝐐, and each value 𝐯𝑖, 𝐖𝑣 ∈ R𝐷𝐵×𝐷𝑣 , 𝐖𝑣
𝑞 ∈ R𝐷𝐵×𝐷𝑞

are embedding matrices. In contrast to conventional attention modules,
X-Linear attention block uses higher-order feature interactions through
bilinear pooling, resulting in more expressive attention features.
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5. Experiments and analysis

5.1. Performance metrics

The most commonly used evaluation metrics for caption genera-
tion include the Bilingual Evaluation Understudy (BLEU) [34], which
comprises BLEU-1, BLEU-2, BLEU-3, and BLEU-4, the Metric for Evalu-
ation of Translation with Explicit Ordering (METEOR) [35], the Recall-
Oriented Understudy for Gisting Evaluation (ROUGE-L) [36], and the
Consensus-based Image Description Evaluation (CIDEr) [37]. These
evaluation metrics are employed to assess the quality of the generated
captions. The evaluation metric CIDEr has a score range from 0 to 5,
while the remaining range is from 0 to 1.

BLEU is an automatic evaluation metric that exhibits a strong
correlation with human judgments. It assesses the similarity between
generated captions and ground truth captions through n-gram match-
ing rules. BLEU-n, which encompasses BLEU-1, BLEU-2, BLEU-3, and
BLEU-4, is derived based on n-gram analysis. The use of low-order n-
grams (e.g., 1-g) is suitable for evaluating word translation accuracy,
while high-order n-grams (e.g., 4-g) effectively measure the fluency
of captions. Notably, the variation in sentence length is taken into
account.

METEOR calculates scores by aligning the generated captions with
the ground truth captions using precision and recall measures across the
entire corpus. To improve evaluation accuracy, METEOR uses language-
specific resources, including Snowball Stemmers. This consideration
allows for partial matches by accounting for words with the same
stem. In addition, METEOR employs chunks to evaluate the fluency
of captions, where a chunk represents a sequence of contiguous and
ordered matches between two captions.

ROUGE-L computes scores by comparing the longest common subse-
quence between the generated captions and the ground truth captions.
The ‘‘L’’ in ROUGE-L specifically denotes the longest common subse-
quence. One notable advantage of ROUGE-L is its ability to capture the
order matching of word sequences at the sentence level.

CIDEr is an evaluation metric that directly captures human pref-
erences for captions. It focuses on assessing whether the captions
effectively convey key information. One of the main features of CIDEr
is its ability to assign less weight to non-visual information words that
commonly appear in all reference labels. This approach helps mitigate
the influence of sentence length and word frequency. Additionally,
CIDEr incorporates a Gaussian penalty and count constraints based
on the difference in length between generated captions and ground
truth captions. These modifications aim to align the evaluation criterion
more closely with human preferences.

5.2. Implementation details

The experiments are performed our proposed CODP-1200 dataset.
The dataset comprises 1200 images, where 960 images are allocated for
training, 120 images for validation, and another 120 images for testing.
Each image is associated with five annotated sentences. PyTorch is used
as the platform, and the entire experiment was implemented under the
Linux operating system on a server equipped with an Intel(R) Xeon(R)
Gold 6326 CPU @2.90 GHz and NVIDIA A100 GPU*4 @40GRAM.

The CLIP pre-trained model, which has been trained on a large
dataset of image–text pairs, is utilized as the image feature extrac-
tor. The backbone of the model is the ViT-B/16 architecture. It can
be downloaded from the following website, and the baseline for the
diffusion model is DDCap [33].

All input images are resized to a resolution of 256 × 256 pixels,
and the model is trained using 4 A100 GPUs. The training process
employed a batch size of 256, with 64 images allocated to each of
the 4 GPUs. To enable communication of statistical data across the
GPUs, synchronized batch normalization is utilized. For the diffusion
8

model, the maximum length of each sentence is limited to 20, which
Table 3
The influence of different pictures on experimental results.

DDCap B1 B4 M R CIDEr

P1+A+B+T+C+S 55.99 24.17 23.65 46.31 117.05
P2+A+B+T+C+S 54.47 24.36 23.06 46.01 114.5
P1+P2+A+B+T+C+S 56.31 25.85 24.01 47.73 120.1

Our B1 B4 M R CIDEr

P1+A+B+T+C+S 55.15 25.48 23.82 46.61 140.24
P2+A+B+T+C+S 53.85 23.82 23.88 47.93 144.46
P1+P2+A+B+T+C+S 54.16 26.62 24.63 47.36 151.12

B1, B4, M, and R denote BLEU-1, BLEU-4, METEOR, and ROUGE-L respectively.

corresponds to a maximum diffusion step of 20. During training, the
AdamW optimizer with a weight decay of 0.01 is utilized. The learning
rate is initially linearly increased to 2 × 10−4 and then decreased using
cosine decay until reaching 0. The training process consisted of 150
epochs in total, with a warm-up period of 5 epochs and the training
time is 40 h.

5.3. Experiments results

We ensure the diversity and comprehensiveness of the dataset,
encompassing a broad of scenes, objects, and visual features. Fur-
thermore, rigorous text quality control measures are implemented to
guarantee the accuracy and consistency of the textual descriptions.
Subsequently, we conducted three sets of experiments on the dataset
and compared our results with those of existing benchmark methods.
To evaluate the effectiveness of our approach in image captioning
tasks, we employed metrics such as BLEU and CIDEr. The experimental
findings are presented in Tables 3–5. P1 and P2 respectively denote the
two images generated by the text. N denotes the original text extracted
from the textbook. A and B respectively denote volunteers rewritten
versions of the original text. T denotes the text translated from A to
English and then back to Chinese. C and S represent the text that
are generated through text enhancement by ChatGPT and SparkDesk,
respectively.

First, we conduct an evaluation to assess the impact of different
images depicting the same text on the image captioning task in our
dataset. The results of this evaluation are presented in Table 3. The
experimental procedure involved generating two visually similar im-
ages based on the text from source A and training the model using the
corresponding image captionings for P1, P2, and P1+P2. The findings
revealed that training the model with two images associated with a
single sentence yielded more suitable image captionings, compensating
for any potential information gaps in a single image. Specifically, the
BLEU-4 score improved from 23.82 to 26.62, and the CIDEr score
increased from 140.24 to 151.12. Additionally, our proposed DDMXCap
approach outperformed DDCap, achieving higher scores. The BLEU-4
score improved from 25.85 to 26.62 (an increase of 0.77), and the
CIDEr score increased from 120.1 to 151.12 (an increase of 31.02).

Next, we conduct an evaluation to assess the impact of text ex-
pression accuracy on image captions, as presented in Table 4. The
experiments involved comparing directly selected original texts N with
texts generated by A and B. The findings indicate that using the original
text directly resulted in poorer performance, as it failed to fully capture
the events depicted in the images. In contrast, the text expression by
A is more accurate and clear. A supplemented the original text with
additional information and optimized the textual expression, leading
to improved results. However, when B performed semantic rewrites
of A, there is a subjective loss of some information. Specifically, the
BLEU-4 score increased from 25.14 for the original text to 25.96, and
the CIDEr score improved from 118.13 to 148.77. Additionally, our
proposed DDMXCap method outperformed DDCap. The BLEU-4 score
improved from 25.65 to 25.96 (an increase of 0.30), and the CIDEr

score increased from 133.04 to 148.77 (an increase of 15.73).
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Table 4
The influence of text expression accuracy on experimental results.

DDCap B1 B4 M R CIDEr

P1+P2+N+C+S+T 52.57 22.13 22.98 44.37 97.5
P1+P2+B+C+S+T 54.6 24.23 23.01 45.27 114.11
P1+P2+A+C+S+T 53.79 25.65 24.25 46.5 133.04

Our B1 B4 M R CIDEr

P1+P2+N+C+S+T 52.66 25.14 23.17 45.05 118.13
P1+P2+B+C+S+T 55.56 25.41 24.42 46.94 128.66
P1+P2+A+C+S+T 49.98 25.96 23.53 44.74 148.77

Table 5
The influence of different generation models on experimental results.

DDCap B1 B4 M R CIDEr

P1+P2+A+B+S 55.2 23.89 23.29 45.95 116.4
P1+P2+A+B+C 51.84 21.7 22.96 44.48 119.44
P1+P2+A+B+T 52.21 22.71 23.7 46.36 125.8

Our B1 B4 M R CIDEr

P1+P2+A+B+S 51.02 22.3 22.14 42.83 121.16
P1+P2+A+B+C 49.67 22.59 21.98 42.1 124.27
P1+P2+A+B+T 50.65 24.14 22.99 44.55 138.48

Finally, we conduct an evaluation to assess the influence of gen-
ration models on image captions, as presented in Table 5. The ex-
eriments involved comparing the text rewritten by the ChatGPT and
parkDesk models. The results indicate that the text generated by the
hatGPT model outperformed that generated by SparkDesk. It can be
ttributed to the larger training data and more scientifically designed
odel structure of ChatGPT. However, it is important to note that

he combination of A, B, and T yielded the best results. Large lan-
uage models still have limitations in rewriting Chinese text compared
o human capabilities, and further development is necessary. Human
xpertise cannot be fully replaced by machines. Specifically, the BLEU-
score improved from 22.3 for the SparkDesk model to 24.14, and

he CIDEr score increased from 121.16 to 138.48. Additionally, our
roposed DDMXCap method outperformed DDCap. The BLEU-4 score
mproved from 22.71 to 24.14 (an increase of 1.43), and the CIDEr
core increased from 125.8 to 138.48 (an increase of 12.68).

Based on the comprehensive results of the aforementioned exper-
ments, it conclude that the DDMXCap method exhibits exceptional
erformance and feasibility on our self-created dataset. The most re-
arkable outcomes are achieved by combining P1, P2, A, B, T , C,

and S, resulting in a BLEU-4 score of 26.62 and a CIDEr score of
151.12. These experimental findings not only validate the effectiveness
of our proposed method but also offer substantial empirical evidence
in support of our dataset. DDMXCap, due to its utilization of diffusion
models, which may result in longer training times. In the future, the
model will be optimized to enhance its training speed.

6. Conclusions

In the process of language acquisition for children, the oral descrip-
tion of pictures is a common and effective way of fostering language
development. However, visually impaired children often face chal-
lenges in completing this process without proper guidance. To address
this issue, we build a dataset, named CODP-1200, benchmark for assist-
ing in children language acquisition, which is curated and augmented
using AIGC techniques. The dataset consists of 1200 children cartoon
images paired with 6000 corresponding sentences that are used to
describe them. The construction of the dataset begins with volunteerly
selected to constitute the basic corpus from twelve Chinese language
textbooks from the compulsory education curriculum spanning grades
one to six. Based on the original data, two famous large language
9

models ChatGPT and SparkDesk are employed for data augmentation,
subsequently. Finally, the ERNIE-ViLG is utilized to generate children’s
style images corresponding to the textual descriptions.

In addition, based on our proposed dataset, we propose a bench-
mark approach called DDMXCap, which is a diffusion-based model for
image captioning, specifically from image to text. We compared our
model with the baseline methods, and the results showed significant
improvements across all evaluation metrics. This indicates that our ap-
proach has good adaptability and effectiveness in handling the dataset
we proposed.

However, there are still areas that can be further improved. Fu-
ture endeavors should aim to expand the scale and diversity of the
dataset, encompassing a broader range of situations and scenarios.
Moreover, further investigation into enhancements and optimizations
for the proposed method can significantly improve its performance and
adaptability. In the future, we will explore the application to other
childhood disorders, such as ADHD (Attention-Deficit/Hyperactivity
Disorder). Moreover, we can study the impact of multilingual environ-
ments on children’s language acquisition and explore the best strategies
for multilingual education.
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