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A B S T R A C T

Videos inherently blend multiple modalities in real-world scenarios, primarily visual and auditory cues.
When synergized, these cues foster enhanced data representations. Standard clustering techniques, primarily
designed for managing vectorial data in Euclidean spaces, struggle to handle multidimensional data with
nonlinear manifold structures, such as video or image sets. While recent subspace clustering methods using
Riemannian manifold representation tackle this issue, they often sideline auditory information, overlooking
the potential harmony between visual and auditory modalities. This paper presents an innovative approach
that crafts multiple Riemannian manifold-valued descriptors to bridge this gap, encapsulating multimodal video
information in a unified structure. We architect a single-modality Riemannian subspace clustering for individual
modal data and extend it to a multi-modality framework, leveraging the interplay of audio-visual data. Detailed
optimization and convergence analysis are also provided. The proposed approach significantly outperforms the
existing state-of-the-art methods, improving accuracy by 4%, 1%, and 2% on UCF-101, UCF-sport, and AVE
datasets, respectively.
1. Introduction

Real-world scenarios often encompass multiple modalities such as
audio and visual components that are highly interconnected and fa-
cilitate more accurate semantic information prediction (Kudithipudi,
Aguilar-Simon, Babb, et al., 2022; Tan, Zhou, Tao, et al., 2021). The
human brain’s multisensory integration mechanisms have evolved to
adeptly process and amalgamate information from various modalities.
For example, nerve cells in the human brain’s superior temporal sulcus
respond concurrently to visual, audio, and tactile signals, highlighting
the significance of auditory perception in decoding actions and dy-
namic occurrences in the visual realm (Scheliga, Kellermann, Lampert,
et al., 2023). The synergistic relationship between visual and audio
information enables interaction, leading to more precise perceptual
signals.

With these considerations in the vanguard, our study seeks to
address the following research question: How can the integration of
cross-modal information, specifically audio and visual data, enhance
the reliability and accuracy of video clustering?

The code (and data) in this article has been certified as Reproducible by Code Ocean: (https://codeocean.com/). More information on the Reproducibility
Badge Initiative is available at https://www.elsevier.com/physical-sciences-and-engineering/computer-science/journals.
∗ Corresponding author at: School of Communication and Electronic Engineering, East China Normal University, Shanghai 200062, China.

E-mail addresses: wenbo@stu.ecnu.edu.cn (W. Hu), hjzhan@cee.ecnu.edu.cn (H. Zhan), yhtian@cee.ecnu.edu.cn (Y. Tian), xiong@sues.edu.cn (Y. Xiong),
ylu@cee.ecnu.edu.cn (Y. Lu).

In a variety of applications, particularly those encompassing tasks
of video clustering with intricate manifold structures, conventional
clustering methods often fall short due to their inability to efficiently
navigate non-linear data spaces. Over the years, self-expressive clus-
tering methodologies have garnered considerable interest due to their
superior performance (Elhamifar & Vidal, 2013; Hu & Wu, 2020; Liu,
Hu, Wang, et al., 2023; Liu et al., 2012; Wang, Wu, Ren, et al.,
2023). These self-expressive techniques can be perceived as a special-
ized form of dictionary learning method, i.e., utilizing the data itself
as a dictionary. Notable algorithms include Sparse Subspace Cluster-
ing (SSC) (Elhamifar & Vidal, 2013) and Low Rank Representation
(LRR) (Liu et al., 2012). For nonlinear manifold spaces where image
sets or videos are thought to exist, these clustering methods using
Euclidean distance may not deliver consistent performance.

Considering the limitations of existing clustering methods and the
unique structure of videos, the concept of Riemannian manifold rep-
resentation emerges as a promising avenue. Such a representation can
capture the intrinsic geometries of data, making it particularly suitable
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for video or image set clustering. Several researchers (Hu & Xu, 2022;
Piao, Hu, Gao, et al., 2019; Shirazi, Harandi, Sanderson, et al., 2012;
Wang, Hu, Gao, Sun, & Yin, 2014) have examined the method of
Riemannian manifold representation as the basis for such tasks. These
methods leverage the Riemannian manifold representation to process
video or image set data, achieving superior clustering performance
compared to traditional methods, such as SSC (Elhamifar & Vidal,
2013) and LRR (Liu et al., 2012). However, these schemes (Hu & Xu,
2022; Piao et al., 2019; Shirazi et al., 2012; Wang et al., 2014) often
fail to account for the differences between consecutive video frames,
neglecting to capture crucial video motion information. Moreover, they
frequently disregard audio information, relying solely on video frames,
leading to sub-optimal clustering performance.

Analogous to human perception, a more refined model could be
envisaged by harnessing complementary information from disparate
modalities. In recent explorations, a plethora of works have ventured
into audio-visual joint learning, Hu et al. (2020), Pham et al. (2022),
Wang, Mesaros, Heittola, and Virtanen (2021) establish the feature
representation of audio-visual input signals, followed by classification.
In Kazakos, Nagrani, Zisserman, and Damen (2019), Morgado, Vascon-
celos, and Misra (2021), Owens and Efros (2018), the recognition per-
formance of the audio-visual models is augmented in a self-supervised
manner employing multi-modal information. Further, video sequences
usually contain ample motion information, showcasing temporal corre-
lation between diverse events and object movements. The optical flow
feature can be considered visual information that records the temporal
correlation of the video (Kazakos et al., 2019; Song, Sun, & Li, 2022).

To address the complexities of video data, and as suggested by Hu
et al. (2020), Morgado et al. (2021), Wang, Mesaros, et al. (2021)
that leveraging multi-modal information can enhance performance, we
initially constructe multiple Riemannian manifold-valued descriptors.
These descriptors encapsulate key video components: the visual data
provides a direct representation of scenes, optical flow captures motion
dynamics, and audio signals enrich the context with auditory cues.
Subsequently, we propose a single-modality Riemannian subspace clus-
tering method, which can choose any single modality from the multiple
Riemannian manifold-valued descriptors to execute the video’s clus-
tering task. Lastly, we introduce a novel multi-modality Riemannian
subspace clustering method, built on the assumption of cross-modal in-
formation fusion, that can concurrently amalgamate information from
multiple modalities. A series of comprehensive experiments on several
datasets validate the superior performance of our proposed methods
over other state-of-the-art methods for handling video clustering tasks.

The primary contributions of this work are encapsulated as follows:
(1) The introduction of multiple Riemannian manifold-valued de-

scriptors capable of representing multimodal information in videos
within a unified framework on Riemannian manifolds.

(2) Proposal of a single-modality Riemannian subspace clustering
method to undertake the video clustering task using single-modal in-
formation extracted from the video, accompanied by corresponding
optimization schemes and performance assessments.

(3) The suggestion of a novel multi-modality Riemannian subspace
clustering method that harnesses audio-visual information to bolster
clustering performance. This method aims to study the complemen-
tary attributes of different Riemannian manifold-valued descriptors to
derive a more accurate and reliable representation, with associated
optimization methods and convergence proofs furnished.

(4) Extensive experiments on benchmark datasets attest to the ef-
fectiveness of our methodologies. An ablation study and parameter
analysis confirm the robustness and efficacy of the proposed methods.

The rest of this paper is organized as follows. The preliminaries
and related works are presented in Section 2. The specifics of the
proposed methods, including the optimized algorithms, are introduced
in Section 3. In Section 4, we relay the experiment results and con-
duct experimental and statistical analysis. Conclusions are drawn in
2

Section 5. t
2. Related works

2.1. Subspace clustering

Low Rank Representation (LRR). Let us start by briefly introduc-
ing the related subspace clustering methods in the Euclidean space.
Given a data set 𝑋 = [𝑥1, 𝑥2,… , 𝑥𝑛] ∈ R𝑑×𝑛, where 𝑑 symbolizes the
dimension of feature space and 𝑛 signifies the number of data samples,
the LRR model (Liu et al., 2012) can be formulated as follows:
𝑚𝑖𝑛
𝐶

𝜆‖𝐶‖∗ + ‖𝑋 −𝑋𝐶‖

2
𝐹 , (1)

where 𝐶 = [𝑐1, 𝑐2,… , 𝑐𝑛] ∈ R𝑛×𝑛 is a coefficient matrix, with column
𝑐𝑖 corresponding to the low rank representation of 𝑥𝑖. Moreover, the
matrix 𝐶 conveys the subspace structure information about the orig-
inal data. After obtaining the coefficient matrix 𝐶, a similarity graph
𝑊 = (|𝐶| + |𝐶|

𝑇 )∕2 can be constructed. Then, the spectral clustering
lgorithm (such as Normalized Cut) (Shi & Malik, 2000; Song, Yao, Nie,
t al., 2021) is used to divide the similarity graph 𝑊 to obtain the final
ata segmentation.
Subspace Clustering on Grassmann Manifolds. To address the

lustering problem of high-dimensional nonlinear Grassmann manifolds
ata, researchers have designed several subspace clustering methods
n Grassmann manifolds. For a given data set  = [𝑋1, 𝑋2,… , 𝑋𝑛]
here 𝑋𝑖 ∈ (𝑝, 𝑑) and 𝑛 represents the number of samples, Wang
t al. (2014) have formulated the LRR method on Grassmann manifolds
nd proposed a low rank representation model on Grassmann manifolds
G-LRR):

𝑖𝑛
𝐶

𝜆‖𝐶‖∗ +
𝑛
∑

𝑖=1
‖𝑋𝑖 ⊖

𝑛
⨄

𝑗=1
𝑋𝑗 ⊙ 𝑐𝑖𝑗‖, (2)

here ‖𝑋𝑖⊖
⨄𝑛

𝑗=1 𝑋𝑗 ⊙𝑐𝑖𝑗‖ represents the manifold measurement, and
⨄𝑛

𝑗=1 𝑋𝑗 ⊙ 𝑐𝑖𝑗 ) denotes the‘‘linear combination’’ of sample points on
ll Grassmann manifolds. The symbols ⊖,

⨄

, ⊙ represent subtraction,
ummation, and multiplication operations on the Grassmann manifold,
espectively.

To seek the sparse expression on the previously learned latent
epresentation, Wang, Hu, Gao, et al. (2018) proposed a cascaded low-
ank and sparse representation on Grassmann manifolds (G-CLRSR):

𝑖𝑛
𝐶,𝑍

𝜆1‖𝐶‖∗ + 𝜆2‖𝑍‖1 + 𝜆3‖𝐶 − 𝐶𝑍‖

2
𝐹 +

𝑛
∑

𝑖=1
‖𝑋𝑖 ⊖

𝑛
⨄

𝑗=1
𝑋𝑗 ⊙ 𝑐𝑖𝑗‖, (3)

here 𝜆1, 𝜆2 and 𝜆3 are three balancing parameters, and the coefficient
, 𝐶 ∈ R𝑛×𝑛.

Similarly to G-LRR and G-CLRSR, Piao et al. (2019) formulated a
ouble nuclear norm-based low-rank representation model on Grass-
ann manifolds (G-DNLR):

𝑚𝑖𝑛
,𝐴,𝐵

𝜆(‖𝐴‖∗ + ‖𝐵‖∗) +
𝑛
∑

𝑖=1
‖𝑋𝑖 ⊖

𝑛
⨄

𝑗=1
𝑋𝑗 ⊙ 𝑐𝑖𝑗‖,

𝑠.𝑡. 𝐶 = 𝐴𝐵,

(4)

here ‖𝐴‖∗ + ‖𝐵‖∗ is the double nuclear norm for 𝐶, 𝐴 ∈ R𝑛×𝑟,
∈ R𝑟×𝑛, and 𝑟 ≤ 𝑛 is the expected rank of coefficient matrix 𝐶.
Recently, for a set of Grassmann samples  = [𝑋1, 𝑋2,… , 𝑋𝑛], Hu

nd Xu (2022) proposed a one-step sparse clustering framework on
rassmann manifolds (G-OKSC):

𝑖𝑛
𝐶

‖𝜙()‖∗ + 𝜆1‖𝐶‖1 +
𝜆2
2

𝑛
∑

𝑖=1
‖𝜙(𝑋𝑖) −

𝑛
∑

𝑗=1
𝜙(𝑋𝑗 )𝑐𝑖𝑗‖2𝐹 , (5)

here 𝜙(⋅) is expressed as the operation which can map data on the
rassmann manifold to Reproducing Kernel Hilbert Space (RKHS).
xploiting the kernel method can maintain global information and
roduce more discriminative data distribution.

These methods are predominantly utilized for image set clustering
ssues, yet they are also applicable to video clustering tasks. They
xclusively capitalize on the visual information in videos, neglecting
he rich audio information that is intrinsically present.
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2.2. Audio-visual joint representation

In videos, two inherent modalities, visual and audio streams, are
naturally presented. The audio modality, accompanying the visual, en-
capsulates complementary information that can significantly augment
the representational capacity of video features (Tagliasacchi, Gfeller,
de Chaumont Quitry, & Roblek, 2020). In recent times, the realm of
audio-visual representation learning has garnered increasing attention
in an endeavor to fully harness audio information (Akbari et al., 2021;
Alwassel et al., 2020; Gao, Oh, Grauman, & Torresani, 2020). Par-
ticularly in dynamic audio-visual videos, the audio carries a plethora
of complementary information to the RGB image sequences, which
can ameliorate challenges associated with distinguishing video samples
based on appearance alone, such as differentiating between playing a
violin and a guitar.

Presently, a predominant focus has been directed toward employ-
ing both visual and auditory information through supervised learning
approaches. For instance, studies denoted as Kazakos et al. (2019),
Morgado et al. (2021), Owens and Efros (2018) have demonstrated an
enhancement in the recognition performance of audio-visual models
through a self-supervised manner, utilizing multi-modal information
from each modality. Arandjelovic and Zisserman (2017) trained an
audio-visual model to ascertain whether image and audio segments
correspond with one another. Furthermore, the advantages of the au-
dio modality have been validated in tasks such as video understand-
ing (Morgado, Li, & Nvasconcelos, 2020; Senocak, Kim, Oh, et al.,
2023). Contrary to these methods, this paper embarks on a venture of
employing both visual and auditory information for video clustering
tasks, an unsupervised approach.

3. Proposed method

In this section, we first introduce multiple Riemannian manifold-
valued descriptors capable for describing video data, then introduce
single-modality Riemannian subspace clustering methods, and finally
introduce the extension of the single-modality method to multimodal,
which can be capable of multiple Riemannian manifold-valued de-
scriptors for audio-visual subspace clustering. The detailed algorithmic
process is illustrated in Fig. 1. The features from the video frame
and optical flow branches are represented as points on the Grassmann
manifold, while the audio signal branch features are expressed as points
on the SPD manifold. All three manifold-valued descriptors are mapped
into a Hilbert space using the kernel method. The fusion of information
across the branches is facilitated by applying adaptive weights to each
coefficient matrix to construct a shared matrix. This shared matrix is
then used in the spectral clustering method to obtain the final clustering
results.

3.1. Riemannian manifold-valued descriptors for multiple modalities

Our approach utilizes three distinct branches: (1) Video frame
branch, (2) Optical flow branch, and (3) Audio signal branch, each en-
gineered to extract specific features from video data. The Video Frame
Branch seizes static visual information, the Optical Flow Branch cap-
tures motion patterns, and the Audio Signal Branch extracts auditory
information.

3.1.1. Video frame branch
Similar to the approach in Hu and Xu (2022), Piao et al. (2019),

Shirazi et al. (2012), Wang et al. (2014, 2018), we perform an SVD
decomposition of each video 𝐹𝑖 in a video dataset  = [𝐹1, 𝐹2,… , 𝐹𝑛].
The decomposition of 𝐹𝑖 = 𝑈𝛴𝑉 𝑇 allows us to represent each video
𝐹𝑖 as a point on the Grassmann manifold (𝑝, 𝑑), denoted as 𝑋𝑖 =
[𝑢1, 𝑢2,… , 𝑢𝑝], by extracting the first 𝑝(𝑝 ≤ 𝑃 ) singular vectors of 𝑈 .
This results in a set of corresponding samples  = [𝑋1, 𝑋2,… , 𝑋𝑛] on
3

he Grassmann manifold for the video dataset  . b
.1.2. Optical flow branch
Optical flow, which captures motion patterns in video data, is

btained for each video 𝐹𝑖 using the LK optical flow method (Baker &
Matthews, 2004). Similar to the video frame branch, these features are
also represented as points on the Grassmann manifold. Therefore, given
an optical flow feature gallery  = [𝑂1, 𝑂2,… , 𝑂𝑛], we construct the
corresponding samples  = [𝑌1, 𝑌2,… , 𝑌𝑛] on the Grassmann manifold.

3.1.3. Audio signal branch
Auditory information is typically segmented into specific time win-

dows, with features extracted for each segment independently. Re-
cent research has explored a variety of feature extraction techniques
for auditory information. As adopted in some recent works (Albadr
et al., 2021, 2022; Yang, Marković, Krenn, et al., 2022), include Mel-
frequency Cepstral Coefficients (MFCC), Zero Crossing Rate (ZCR),
Linear Predictive Coding (LPC) (Chauhan, Isshiki, & Li, 2019; Li,
Parsan, Wang, et al., 2023; Vafeiadis, Votis, Giakoumis, et al., 2020),
MPEG-7 (Muhammad & Alghathbar, 2009), log-Gabor filters (Souli &
Lachiri, 2012), and spectrogram. Among these techniques, the spec-
trogram (Ghandoura, Hjabo, & Al Dakkak, 2021; Yang et al., 2022),
which represents each audio signal as a time-frequency image, has
garnered particular attention due to its superior experimental perfor-
mance. Based on this, similar to Chen and Huang (2021), Ghandoura
et al. (2021), Yang et al. (2022), we apply the spectrogram function
in MATLAB to represent each audio signal as a time-frequency im-
age. The spectrogram’s texture information is further processed using
the Log-Gabor filter (Field, 1987; Souli & Lachiri, 2012) to extract
more discriminative information. Unlike a traditional Gabor filter,
the Log-Gabor filter better represents the high-frequency portion and
avoids overemphasis of the low-frequency part of the image. For each
spectrogram, we compute a corresponding covariance matrix 𝑆𝑖:

𝑖 =
1

𝑔𝑖 − 1

𝑔𝑖
∑

𝑗=1
(𝐺𝑖𝑗 − 𝑃 𝑖)(𝐺𝑖𝑗 − 𝑃 𝑖)𝑇 , (6)

where 𝐺𝑖 = [𝐺𝑖𝑗 , 𝑗 = 1,… , 𝑘𝑖], and 𝑘𝑖 is the number of Gabor features,
𝑃 𝑖 = 1

𝑔𝑖

∑𝑔𝑖
𝑗=1 𝐺𝑖𝑗 is denoted as the mean matrix. The diagonal terms

of the covariance matrix reflect the variance of the individual terms of
the eigenvector, and the non-diagonal terms of the covariance matrix
reflect the correlation between the individual terms of the eigenvector.
By capturing the distribution characteristics of the data, the covariance
matrix, considered as a point on the SPD manifold, provides a potent
representation capability.

3.2. Single-modality Riemannian subspace clustering

In this section, we present the Riemannian subspace clustering
for single-modality, hereafter referred to as Single-modality Rieman-
nian Subspace Clustering (SRSC). The features extracted from different
branches encapsulate the video from distinct perspectives. Employing
three diverse branch strategies, we represent the 𝑖th video as the
tuple (𝑋𝑖, 𝑌𝑖, 𝑆𝑖). It is noteworthy that 𝑋𝑖 and 𝑌𝑖 denote points on the

rassmann manifold, whereas 𝑆𝑖, derived from the audio signal branch,
esides on the SPD manifold.

Given that Riemannian manifolds lack a vector space structure,
he traditional subspace clustering algorithms predicated on Euclidean
pace are unsuitable for direct application to Riemannian manifolds.
oreover, the subspace clustering algorithms rooted in the

elf-expressive property implicate numerous linear operations. While
onsidering the fundamental structure of Riemannian manifolds, we
ropose three solutions to overcome these challenges in subspace
lustering on Riemannian manifolds:

(1) Direct construction of a self-expressive-based subspace cluster-
ng model within the original Riemannian manifold space. However,
he optimization of the solution in the Riemannian manifold space can
e non-trivial.
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Fig. 1. The workflow of the proposed multi-modality Riemannian subspace clustering method.
(2) Local flattening of Riemannian manifolds via the tangent space,
which transmutes the non-Euclidean geometry into a Euclidean struc-
ture. However, this approach, only preserving the local structure of
Riemannian manifold data via mapping, may neglect the global infor-
mation and thus can result in sub-optimal clustering performance.

(3) Kernel methods in Euclidean space, which effectively explore
data nonlinearity (Ali, Yaseen, Aljanabi, et al., 2023; Wang, Liu, Liu,
et al., 2021; Zhang, Kang, Xu, et al., 2022). These methods work on the
principle of mapping the data to a high-dimensional feature space, thus
providing a more comprehensive representation of data distribution.
In addition, kernel functions can be utilized to directly compute the
inner product of data in high-dimensional space, bypassing the need to
analyze the specific form of the data in such spaces.

As the Reproducing Kernel Hilbert Space (RKHS) is a complete inner
product space, the mapping process transforms the nonlinear manifold
into a linear space, thus facilitating the resolution of linear operations
based on self-expressiveness. Given a data set  = [𝑅1, 𝑅2,… , 𝑅𝑛] on
the Riemannian manifold, where  can be represented as one of the
Riemannian manifold-valued descriptors from the three branches, we
define the single-modality Riemannian subspace clustering based on
Hilbert kernel space embedding as follows:

𝑚𝑖𝑛
𝐶

𝜆‖𝐶‖1 +
𝑛
∑

𝑖=1
‖𝜙(𝑅𝑖) −

𝑛
∑

𝑗=1
𝜙(𝑅𝑗 )𝑐𝑖𝑗‖2𝐹 , (7)

𝑠.𝑡. 𝑑𝑖𝑎𝑔(𝐶) = 0,

where 𝜙(⋅) denotes a feature mapping function that projects the Rie-
mannian manifold data into RKHS, 𝐶 = (𝑐𝑖𝑗 )𝑛𝑖,𝑗=1 represents the self-
expression coefficient matrix, and 𝜆 is a trade-off parameter.

3.2.1. Optimization of SRSC
By applying the kernel trick, Eq. (7) is transformed into the follow-

ing equivalent problem:

𝑚𝑖𝑛
𝐶

𝜆‖𝐶‖1 + 𝑡𝑟(𝐾 − 2𝐾𝐶 + 𝐶𝑇𝐾𝐶), 𝑠.𝑡. 𝑑𝑖𝑎𝑔(𝐶) = 0, (8)

where 𝐾 is the kernel Gram matrix 𝐾 = (𝑘𝑖𝑗 )𝑛𝑖,𝑗=1. By introducing
auxiliary variable 𝐴, the above problem can be reformulated as follows:

𝑚𝑖𝑛
𝐶,𝐴

𝜆‖𝐶‖1 + 𝑡𝑟(𝐾 − 2𝐾𝐴 + 𝐴𝑇𝐾𝐴), (9)

𝑠.𝑡. 𝐴 = 𝐶 − 𝑑𝑖𝑎𝑔(𝐶).
4

It can be solved by alternating direction method of multipliers
(ADMM) (Boyd, Parikh, Chu, et al., 2011). The augmented Lagrangian
function is given by:

 = (𝐶,𝐴, 𝛥)

= 𝜆‖𝐶‖1 + 𝑡𝑟(𝐾 − 2𝐾𝐴 + 𝐴𝑇𝐾𝐴)

+
𝜇
2
‖𝐴 − 𝐶 + 𝑑𝑖𝑎𝑔(𝐶)‖2𝐹 + 𝑡𝑟[𝛥𝑇 (𝐴 − 𝐶 + 𝑑𝑖𝑎𝑔(𝐶))],

(10)

where 𝛥 is a Lagrange multiplier, and 𝜇 ≥ 0 is the penalty parameter.
We update each of the above variables by minimizing Eq. (10) while
keeping the other variables fixed.

Updating A. To update 𝐴, we solve the following sub-problem by
fixing the other variables.

𝑚𝑖𝑛
𝐶,𝐴

− 2𝑡𝑟(𝐾𝐴) + 𝑡𝑟(𝐴𝑇𝐾𝐴) +
𝜇
2
‖𝐴 − 𝐶 + 𝑑𝑖𝑎𝑔(𝐶)‖2𝐹

+ 𝑡𝑟[𝛥𝑇 (𝐴 − 𝐶 + 𝑑𝑖𝑎𝑔(𝐶))].
(11)

This is a quadratic optimization problem for 𝐴. We set Eq. (11)
derivative w.r.t. 𝐴 to zero and get the closed-form solution as:

𝐴 = (𝐾 + 𝜇𝐼)−1 × (𝐾 + 𝜇𝐶 − 𝛥), (12)

where 𝐼 is an identity matrix.
Updating C. The update of 𝐶 can be achieved by solving the

following sub-problem (Daubechies, Defrise, & De Mol, 2004; Donoho,
1995):

𝑚𝑖𝑛
𝐶

𝜆‖𝐶‖1 +
𝜇
2
‖𝐴 − 𝐶 + 𝑑𝑖𝑎𝑔(𝐶)‖2𝐹

+ 𝑡𝑟[𝛥𝑇 (𝐴 − 𝐶 + 𝑑𝑖𝑎𝑔(𝐶))],
(13)

this sub-problem has a closed-form solution given by:

𝐶 = 𝛬 − 𝑑𝑖𝑎𝑔(𝛬),

𝛬 = 𝑇 𝜆
𝜇
(𝐴 + 𝛥

𝜇
),

(14)

where 𝑇𝛶 (⋅) is an element-wise soft-thresholding operator that is de-
fined as 𝑇𝛶 (𝑥) = 𝑠𝑖𝑔𝑛(𝑥) ⋅ 𝑚𝑎𝑥(|𝑥| − 𝛶 , 0).

Updating 𝛥. The Lagrangian multiplier is updated according to the
following equation:

𝛥 = 𝛥 + 𝜇(𝐴 − 𝐶 + 𝑑𝑖𝑎𝑔(𝐶)). (15)

These updating steps are repeated until satisfying the convergence
condition or exceed the maximal number of iterations. After obtaining
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Algorithm 1 SRSC
Input:  = [𝑅1, 𝑅2, ..., 𝑅𝑛], 𝜆 > 0, 𝜇 > 0, 𝜇𝑚𝑎𝑥 = 106, 𝜌 = 1.5
Initialize: 𝐴 = 0, 𝐶 = 0, 𝛥 = 0
1: while not converged do
2: Update 𝐴 according to Eq. (12).
3: Update 𝐶 according to Eq. (14).
4: Update 𝛥 according to Eq. (15).
5: Update the penalty variable 𝜇 ∶= 𝑚𝑖𝑛(𝜌𝜇, 𝜇𝑚𝑎𝑥);
6: end while

Apply the spectral clustering algorithm to the affinity matrix 𝑊 =
(|𝐶| + |𝐶|

𝑇 )∕2;
utput: Assignment of the data points to 𝑘 clusters.

the coefficient matrix 𝐶, the next step of the algorithm is to find the
corresponding clusters. Here, we apply the spectral clustering method
to the affinity matrix given by 𝑊 = (|𝐶|+ |𝐶|

𝑇 )∕2 to produce the final
clustering results. Algorithm 1 summarizes the steps of SRSC.

3.3. Multi-modality Riemannian subspace clustering

This section introduces the method for multi-modality Riemannian
subspace clustering, henceforth referred to as M-AVSC, which leverages
both audio and visual information to perform subspace clustering.
For multiple Riemannian manifold-valued descriptors, (𝑋𝑖, 𝑌𝑖, 𝑍𝑖) rep-
resent heterogeneous data distributed across distinct manifolds. The
kernel method facilitates the embedding of this data into Hilbert space,
thereby addressing not only the nonlinearity issue inherent to mani-
fold data but also offering a comprehensive, high-dimensional feature
representation.

To provide a clearer representation, let (𝑣) = [𝑅(𝑣)
1 , 𝑅(𝑣)

2 ,… , 𝑅(𝑣)
𝑛 ]

symbolize the features of 𝑣 branches, where 𝑅(𝑣)
𝑖 denotes the features

of the 𝑣th branch from the 𝑖th video. We express the new feature of
the 𝑣th branch feature as 𝜙𝑣. Although 𝜙𝑣 is typically implicit in kernel
methods, for simplicity, we employ it as an explicit feature vector.

The choice of an appropriate kernel function is a pivotal aspect of
kernel methods. Particularly for unsupervised cases, the appropriate
kernel cannot be selected through a validation set, and we must rely
on prior knowledge pertaining to the subspace clustering problem to
define 𝐾 using a simple kernel. For the Riemannian manifold-valued
descriptors (𝑣) = [𝑅(𝑣)

1 , 𝑅(𝑣)
2 ,… , 𝑅(𝑣)

𝑛 ], we can acquire the matrix of each
coefficient by solving the following equation:

𝑚𝑖𝑛
{𝐶(𝑣)}𝑏𝑣=1

𝑏
∑

𝑣=1
(

𝑛
∑

𝑖=1
‖𝜙𝑣(𝑅

(𝑣)
𝑖 ) −

𝑛
∑

𝑗=1
𝜙𝑣(𝑅

(𝑣)
𝑗 )𝑐𝑖𝑗‖2𝐹 + 𝜆‖𝐶 (𝑣)

‖1), (16)

𝑠.𝑡. 𝑑𝑖𝑎𝑔(𝐶 (𝑣)) = 0, 𝑣 = 1,… , 𝑏,

where 𝜙𝑣(⋅) signifies the kernel mapping function of each branch fea-
ture, 𝑏 denotes the number of branches, 𝐶 (𝑣) represents the coefficient
matrix for the 𝑣th branch feature, ‖𝐶 (𝑣)

‖1 is the sparse constraint
term of 𝐶 (𝑣), and 𝜆 is the trade-off parameter. Upon application of
Eq. (16), we independently secure the self-expression coefficient ma-
trix for each descriptor. In contrast to the single-modality scenario,
the multi-modality setting encompasses multiple coefficient matrices.
To discern the diverse contributions made by different Riemannian
manifold-valued descriptors, we seek to obtain a shared coefficient
matrix 𝐶∗ predicated on multiple descriptors. The fusion method for
the multiple coefficient matrix 𝐶 (𝑣) is underpinned by two intuitive
assumptions:

(1) The 𝐶 (𝑣) from each branch is viewed as a perturbation of the
consistent graph 𝐶∗.

(2) To better discern the contributions of different Riemannian
manifold-valued descriptors, graphs closer to the consistent graph
should be accorded larger weights. To mitigate the impact of low-
quality branch features (e.g., video scenes of children playing with
5

v

piano music added), we endeavor to allocate different weights to
different graphs.

Based on these principles, the fusion mechanism can be formulated
as follows:
𝑏
∑

𝑣=1
𝜔(𝑣)

‖𝐶 (𝑣) − 𝐶∗
‖

2
𝐹 , 𝑣 = 1,… , 𝑏, (17)

here the weight 𝜔(𝑣) denotes the significance of the different Rie-
annian manifold-valued descriptors. We employ an inverse distance
eighting scheme:

(𝑣) = 1
2‖𝐶 (𝑣) − 𝐶∗

‖𝐹
. (18)

As 𝐶∗ is not known a priori, we can approximate it iteratively. By
ntegrating Eqs. (16) and (17), we can formulate the following objective
unction:

𝑚𝑖𝑛
𝐶(𝑣)}𝑏𝑣=1 ,𝐶∗

𝑏
∑

𝑣=1
(

𝑛
∑

𝑖=1
‖𝜙𝑣(𝑅

(𝑣)
𝑖 ) −

𝑛
∑

𝑗=1
𝜙𝑣(𝑅

(𝑣)
𝑗 )𝑐𝑖𝑗‖2𝐹

+𝜆‖𝐶 (𝑣)
‖1 + 𝜔(𝑣)

‖𝐶 (𝑣) − 𝐶∗
‖

2
𝐹 ),

𝑠.𝑡. 𝑑𝑖𝑎𝑔(𝐶 (𝑣)) = 0, 𝑣 = 1,… , 𝑏.

(19)

Here, 𝜆 and 𝜔(𝑣) are two non-negative parameters used to balance
he three terms, and 𝜔(𝑣) can be updated with iterative adaptive.

.3.1. Optimization of M-AVSC
To facilitate the expression of the optimization process, Eq. (19) can

e transformed into the following form:

𝑚𝑖𝑛
(𝑣) ,𝐶∗

𝑛
∑

𝑖=1
‖𝜙𝑣(𝑅

(𝑣)
𝑖 ) −

𝑛
∑

𝑗=1
𝜙𝑣(𝑅

(𝑣)
𝑗 )𝑐𝑖𝑗‖2𝐹

+𝜆‖𝐶 (𝑣)
‖1 + 𝜔(𝑣)

‖𝐶 (𝑣) − 𝐶∗
‖

2
𝐹 ,

𝑠.𝑡. 𝑑𝑖𝑎𝑔(𝐶 (𝑣)) = 0.

(20)

For optimization purposes, the variables are separated. The auxil-
ary variables 𝐶 (𝑣)

1 , 𝐶 (𝑣)
2 , and 𝐴(𝑣) are introduced, enabling the refor-

atting of Eq. (20) as:

𝑚𝑖𝑛
𝐶(𝑣)
1 ,𝐶(𝑣)

2 ,𝐴(𝑣) ,𝐶∗

𝑛
∑

𝑖=1
‖𝜙𝑣(𝑅

(𝑣)
𝑖 ) −

𝑛
∑

𝑗=1
𝜙𝑣(𝑅

(𝑣)
𝑗 )𝑎𝑖𝑗‖2𝐹

+𝜆‖𝐶 (𝑣)
1 ‖1 + 𝜔(𝑣)

‖𝐶 (𝑣)
2 − 𝐶∗

‖

2
𝐹 ,

.𝑡. 𝐴(𝑣) = 𝐶 (𝑣)
1 − 𝑑𝑖𝑎𝑔(𝐶 (𝑣)

1 ), 𝐴(𝑣) = 𝐶 (𝑣)
2 , 𝑣 = 1,… , 𝑏,

(21)

ince 𝜙(⋅) is usually implicit, the regularization term in can be extended
sing the kernel trick method:

𝑛
∑

𝑖=1
‖𝜙𝑣(𝑅

(𝑣)
𝑖 ) −

𝑛
∑

𝑗=1
𝜙𝑣(𝑅

(𝑣)
𝑗 )𝑎𝑖𝑗‖2𝐹

𝑡𝑟(𝐾 (𝑣) − 2𝐾 (𝑣)𝐴(𝑣) + (𝐴(𝑣))𝑇𝐾 (𝑣)𝐴(𝑣)),

(22)

here 𝐾 (𝑣) = 𝜙𝑣(𝑅(𝑣))𝑇𝜙𝑣(𝑅(𝑣)) denotes the kernel matrix for the 𝑣th
ranch. We apply the ADMM (Boyd et al., 2011) to solve the opti-
ization problem in Eq. (19) with the augmented Lagrangian function
efined as follows:

= (𝐶 (𝑣)
1 , 𝐶 (𝑣)

2 , 𝐴(𝑣), 𝐶∗, 𝛥(𝑣)
1 , 𝛥(𝑣)

2 )

= 𝑡𝑟(𝐾 (𝑣) − 2𝐾 (𝑣)𝐴(𝑣) + (𝐴(𝑣))𝑇𝐾 (𝑣)𝐴(𝑣)) + 𝜆‖𝐶 (𝑣)
1 ‖1

+ 𝜔(𝑣)
‖𝐶 (𝑣)

2 − 𝐶∗
‖

2
𝐹 +

𝜇1
2
‖𝐴(𝑣) − 𝐶 (𝑣)

1 + 𝑑𝑖𝑎𝑔(𝐶 (𝑣)
1 )‖2𝐹

+
𝜇2
2
‖𝐴(𝑣) − 𝐶 (𝑣)

2 ‖

2
𝐹 + 𝑡𝑟[𝛥(𝑣)𝑇

1 (𝐴(𝑣) − 𝐶 (𝑣)
1 + 𝑑𝑖𝑎𝑔(𝐶 (𝑣)

1 ))]

+ 𝑡𝑟[𝛥(𝑣)𝑇
2 (𝐴(𝑣) − 𝐶 (𝑣)

2 )],

(23)

here {𝛥(𝑣)
𝑖 }2𝑖=1 ∈ R𝑛×𝑛 is the Lagrange multiplier and {𝜇𝑖 > 0}2𝑖=1

enotes the penalty parameter. We alternatively update each of these
ariables by minimizing Eq. (23) while fixing the other variables.
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Algorithm 2 M-AVSC
Input: 𝑅 = {𝑅(𝑣)}𝑏𝑣=1, 𝜆 > 0, 𝜇1 > 0, 𝜇2 > 0, 𝜇𝑚𝑎𝑥 = 106, 𝜌 = 1.5
Initialize: 𝐴(𝑣) = 0, 𝐶 (𝑣)

1 = 0, 𝐶 (𝑣)
2 = 0, 𝐶∗ = 0, 𝛥(𝑣)

1 = 0, 𝛥(𝑣)
2 = 0,

= 1, ..., 𝑏
1: while not converged do
2: For 𝑣 = 1 to 𝑏:
3: Update 𝐴(𝑣) according to Eq. (24).
4: Update 𝐶 (𝑣)

1 according to Eq. (26).
5: Update 𝐶 (𝑣)

2 according to Eq. (28).
6: Update 𝛥(𝑣)

1 and 𝛥(𝑣)
2 according to Eq. (29).

7: end for
8: Update the penalty variable 𝜇 ∶= 𝑚𝑖𝑛(𝜌𝜇, 𝜇𝑚𝑎𝑥);
9: Update 𝐶∗ according to Eq. (30).

10: end while
Output: 𝐶∗.

Updating 𝐴(𝑣). By fixing the remaining variables, we can update
𝐴(𝑣) by solving the following sub-problem:

𝐴(𝑣) = {𝐾 (𝑣) + (𝜇1 + 𝜇2)𝐼}−1

× {𝐾 (𝑣) + 𝜇1𝐶
(𝑣)
1 + 𝜇2𝐶

(𝑣)
2 − 𝛥(𝑣)

1 − 𝛥(𝑣)
2 }.

(24)

where 𝐼 is an identity matrix.
Updating 𝐶 (𝑣)

1 . While fixing the remaining variables, the 𝐶 (𝑣)
1 can

e updated by solving the following sub-problem:

𝑖𝑛
𝐶(𝑣)
1

𝜆‖𝐶 (𝑣)
1 ‖1 +

𝜇1
2
‖𝐴(𝑣) − 𝐶 (𝑣)

1 + 𝑑𝑖𝑎𝑔(𝐶 (𝑣)
1 ) +

𝛥(𝑣)
1
𝜇1

‖

2
𝐹 . (25)

This sub-problem has the following closed-form solution:

𝐶 (𝑣)
1 = 𝛬(𝑣) − 𝑑𝑖𝑎𝑔(𝛬(𝑣)), (26)

where 𝛬(𝑣) = 𝑇 𝜆
𝜇1
(𝐴(𝑣) +

𝛥(𝑣)1
𝜇1

), 𝑇 is the soft threshold operator that can
be defined as 𝑇𝛶 (𝑥) = 𝑠𝑖𝑔𝑛(𝑥) ⋅ 𝑚𝑎𝑥(|𝑥| − 𝛶 , 0).

Updating 𝐶 (𝑣)
2 . The sub-problem to update 𝐶 (𝑣)

2 can be written as:

𝑚𝑖𝑛
𝐶(𝑣)
2

𝜔(𝑣)
‖𝐶 (𝑣)

2 − 𝐶∗
‖

2
𝐹 +

𝜇2
2
‖𝐴(𝑣) − 𝐶 (𝑣)

2 ‖

2
𝐹

+𝑡𝑟[𝛥(𝑣)𝑇
2 (𝐴(𝑣) − 𝐶 (𝑣)

2 )].
(27)

The derivation of the above equation yields the optimal solution of
(𝑣)
2 :

(𝑣)
2 = (2𝜔(𝑣) + 𝜇2)−1(2𝜔(𝑣)𝐶∗ + 𝜇2𝐴

(𝑣) + 𝛥(𝑣)
2 ). (28)

Updating 𝛥(𝑣). The Lagrange multiplier is updated according to the
following equations:

𝛥(𝑣)
1 = 𝛥(𝑣)

1 + 𝜇1(𝐴(𝑣) − 𝐶 (𝑣)
1 + 𝑑𝑖𝑎𝑔(𝐶 (𝑣)

1 )),

𝛥(𝑣)
2 = 𝛥(𝑣)

2 + 𝜇2(𝐴(𝑣) − 𝐶 (𝑣)
2 ).

(29)

Updating 𝐶∗. The closed-form solution of 𝐶∗ can be obtained by
setting the partial derivative of Eq. (23) with respect to 𝐶∗ to zero:

𝐶∗ =
∑𝑚

𝑣=1 𝜔
(𝑣)𝐶 (𝑣)

∑𝑚
𝑣=1 𝜔(𝑣)

. (30)

The iterative update process described above is continued until
either convergence is achieved, or the set maximum number of iter-
ations has been exceeded. This update procedure is summarized in
Algorithm 2. Convergence is checked at each iteration 𝑘 by ensuring
the following constraints are met: {𝐴(𝑣)

𝑘 − 𝐴(𝑣)
𝑘−1}∞ ≤ 𝜀, {𝐴(𝑣) − 𝐶 (𝑣)

1 +
𝑖𝑎𝑔(𝐶 (𝑣)

1 )}∞ ≤ 𝜀, {𝐴(𝑣) −𝐶 (𝑣)
2 }∞ ≤ 𝜀, where 𝑣 = 1,… , 𝑏. Upon acquiring

he shared coefficient matrix 𝐶∗, which is based on multi-branch fea-
ures as delineated in Algorithm 2, we derive the final clustering results.
his is accomplished by employing the spectral clustering method in
ccordance with the relation 𝑊 = (|𝐶∗

| + |𝐶∗
|

𝑇 )∕2.
6

.4. Selection of Kernel function

Following the idea of the kernel method in Euclidean space, it
s also feasible to embed a manifold in RKHS applicable to linear
uilding on the concept of the kernel method in Euclidean space, we
xtend the approach by embedding a manifold in RKHS, thereby ren-
ering it applicable to linear geometry. Given that visual information
i.e., video frame branch and optical flow branch) exists as points on

the Grassmann manifold, we adopt the projection kernel in line with
Refs. Harandi, Sanderson, Shirazi, et al. (2011), Hu and Xu (2022).

Projection Kernel: This kernel is defined in Harandi, Salzmann,
Jayasumana, et al. (2014), Harandi et al. (2011). Given two samples
𝑋𝑖 and 𝑋𝑗 located on Grassmann manifolds, the projection kernel can
e expressed as follows:

𝑃𝑟𝑜𝑗 (𝑋𝑖, 𝑋𝑗 ) = ‖𝑋𝑇
𝑖 𝑋𝑗‖

2
𝐹 = 𝑡𝑟[(𝑋𝑖𝑋

𝑇
𝑖 )(𝑋𝑗𝑋

𝑇
𝑗 )]. (31)

he ensuing equation validates its non-negativity. For all [𝑋1,… , 𝑋𝑛] ∈
(𝑑, 𝑝) and [𝑏1,… , 𝑏𝑛] ∈ R, we can express:
𝑛
∑

𝑖,𝑗=1
𝑏𝑖𝑏𝑗‖𝑋

𝑇
𝑖 𝑋𝑗‖

2
𝐹 =

𝑛
∑

𝑖,𝑗=1
𝑏𝑖𝑏𝑗 𝑡𝑟(𝑋𝑖𝑋

𝑇
𝑖 𝑋𝑖𝑋

𝑇
𝑗 )

= 𝑡𝑟(
𝑛
∑

𝑖=1
𝑏𝑖𝑋𝑖𝑋

𝑇
𝑖 )

2 = ‖

𝑛
∑

𝑖=1
𝑏𝑖𝑋𝑖𝑋

𝑇
𝑖 ‖

2
𝐹 ≥ 0.

(32)

For the audio signal branch, which can be conceptualized as a point
n the SPD manifold, we employ the inner product kernel, in keeping
ith Refs. Hu and Wu (2020), Jayasumana, Hartley, Salzmann, et al.

2013).
Inner Product Kernel: Leveraging the Frobenius norm and the

olarization formula, the inner product of two 𝑛-dimensional SPD
anifold data sets 𝑆𝑖 and 𝑆𝑗 in the tangent space can be defined thus:

< 𝑙𝑜𝑔(𝑆𝑖), 𝑙𝑜𝑔(𝑆𝑗 ) >= 𝑡𝑟[𝑙𝑜𝑔(𝑆𝑖) ⋅ 𝑙𝑜𝑔(𝑆𝑗 )], (33)

here 𝑡𝑟[⋅] denotes the trace of the matrix. In line with Ref. Jayasumana
t al. (2013), the kernel function on 𝑆𝑦𝑚+

𝑑 can be derived:

𝐼𝑛𝑛𝑒𝑟(𝑆𝑖, 𝑆𝑗 ) = 𝑡𝑟(𝑙𝑜𝑔(𝑆𝑖)𝑙𝑜𝑔(𝑆𝑗 )). (34)

owever, according to Mercer’s theorem, the kernel function must be
ositive definite to ensure a valid RKHS. Hence, for all [𝑆1,… , 𝑆𝑛] ∈
𝑦𝑚+

𝑑 and [𝑏1,… , 𝑏𝑛] ∈ R:
𝑛
∑

𝑖,𝑗=1
𝑏𝑖𝑏𝑗 𝑡𝑟[𝑙𝑜𝑔(𝑆𝑖) ⋅ 𝑙𝑜𝑔(𝑆𝑗 )] = ‖

𝑛
∑

𝑖
𝑏𝑖𝑙𝑜𝑔(𝑆𝑖)‖2𝐹 ≥ 0. (35)

n conclusion, the kernel function is positive definite and thus satisfies
he stipulations of Mercer’s theorem.

. Experimental result and analysis

.1. Evaluation metrics

Six widely used clustering metrics: accuracy, Normalized Mutual
nformation (NMI), precision, recall, F-score, and Adjusted Rand Index
ARI), are applied. Notably, higher values indicate better clustering
erformance (Manning, Raghavan, & Schütze, 2008; Xie, Tao, Zhang,
t al., 2018).

Accuracy provides an intuitive understanding of the overall correct-
ess of the clustering. Denote 𝑟𝑖 as the clustering result and 𝑙𝑖 as the
round truth, the accuracy is estimated by:

𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
∑𝑁

𝑖=1 𝛿(𝑟𝑖, 𝑚𝑎𝑝(𝑙𝑖))
𝑁

, (36)

where 𝛿(𝑥, 𝑦) is the delta function that equals 1 if 𝑥 = 𝑦 and equals zero
otherwise, and 𝑚𝑎𝑝(𝑙𝑖) is the mapping function that perutes clustering
results 𝑙𝑖 to the equivalent labels from the dataset. The best mapping
can be found by employing the Kuhn–Munkres algorithm.
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Fig. 2. Sample frames of different datasets. Each row represents a sequence of frames within a video.
NMI quantifies the mutual information shared between the cluster-
ing results and the true labels, we can calculate it following:

𝑁𝑀𝐼(𝑈, 𝑉 ) = 2 ×
𝐼(𝑈, 𝑉 )

𝐻(𝑈 ) +𝐻(𝑉 )
, (37)

where 𝐼(𝑈, 𝑉 ) is the mutual information between 𝑈 and 𝑉 . For cluster-
ing, 𝑈 and 𝑉 are clustering results and true labels, respectively. 𝐻(𝑈 )
and 𝐻(𝑉 ) are the entropies of 𝑈 and 𝑉 , respectively.

Precision measures the homogeneity within a cluster, gauging the
extent to which data points, predominantly from a single true class,
are clustered together. Recall, on the other hand, quantifies how com-
prehensively the data points from a particular true class are grouped
together across clusters. The formulas for precision and recall are as
follows:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

, (38)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

, (39)

where 𝑇𝑃 and 𝑇𝑁 denote the number of true positives and true
negatives, 𝐹𝑃 and 𝐹𝑁 denote the number of false positives and false
negatives. After obtaining precision and recall, we can calculate F-score
following:

𝐹 -𝑠𝑐𝑜𝑟𝑒 = 2 × 𝑅𝑒𝑐𝑎𝑙𝑙 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
𝑅𝑒𝑐𝑎𝑙𝑙 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

, (40)

ARI evaluates the consistency of all possible combinations of data
point pairs between the clustering results and the true labels. Then the
ARI is defined by:

𝐴𝑅𝐼 =
𝑅𝐼 − 𝐸(𝑅𝐼)

𝑚𝑎𝑥(𝑅𝐼) − 𝐸(𝑅𝐼)
, (41)

where RI = 𝑇𝑃+𝑇𝑁
𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁 denotes Rand Index. By examining the

clustering results through multiple lenses, we aim to capture a more
nuanced understanding of the algorithm’s efficacy.

All experiments are implemented in MATLAB R2018a software on
the computer with an Intel(R) Core (TM) i7 CPU (2.8 GHz) and 8.0 GB
RAM. To avoid the effect of randomness caused by the k-means algo-
rithm, each experiment is repeated 20 times, and the average clustering
performance with standard deviation is reported. The implementation
codes for our approach are available at https://github.com/infinite-
hwb/mavsc.

4.2. Description of datasets

In this research, three significant datasets have been utilized: UCF-
101 (Soomro, Zamir, & Shah, 2012)1, UCF-Sport (Rodriguez, Ahmed,
& Shah, 2008)2, and the Audio-Visual Event (AVE) dataset (Tian, Shi,
Li, et al., 2018)3. For the UCF-101 dataset, not all videos contain audio
information. To facilitate a more comprehensive evaluation, we select
ten categories and choose 20 individual videos from each category.

1 https://www.crcv.ucf.edu/data/UCF101.php
2 https://www.crcv.ucf.edu/data/UCF_Sports_Action.php
3 https://sites.google.com/view/audiovisualresearch
7

Table 1
Summary of the datasets used in this work.

Dataset Video num. Category num. Contains audio

UCF-101 200 10 Yes
UCF-Sport 150 10 No
AVE 4,143 28 Yes

These datasets are rich sources of video sequences derived from var-
ious real-world activities and events. While UCF-101 and AVE datasets
are collated from YouTube, the UCF-Sport dataset is collated from tele-
vision channels. To maintain uniformity across experiments, the video
clips from all datasets are converted to grayscale images, with varying
dimensions based on computational constraints. Table 1 summarizes
the key details of these datasets, and few examples from these three
dataset are presented in Fig. 2.

4.3. Description of comparative methods

We evaluate the clustering performance of our proposed method
in comparison with several other representative methods, namely G-
KM (Shirazi et al., 2012), G-LRR (Wang et al., 2014), G-DNLR (Piao
et al., 2019), and G-OKSC (Hu & Xu, 2022). We reproduce the code
for G-KM and G-LRR based on the description provided in Shirazi et al.
(2012), Wang et al. (2014), respectively. The original programs for G-
DNLR and G-OKSC are obtained directly from the authors of Hu and
Xu (2022), Piao et al. (2019).

In this context, SRSC stands as a single-modality Riemannian sub-
space clustering method, which is tested using information from three
distinct aspects: video frames (SRSC(V)), optical flow (SRSC(O)), and
audio signal data (SRSC(A)). Concurrently, M-AVSC is introduced as
a multi-modal Riemannian subspace representation method with the
ability to exploit audio-visual data for video clustering. The efficacy
of SRSC, M-AVSC, and all other comparison methods is tested across
three widely accepted public datasets: UCF-101 (Soomro et al., 2012),
UCF-Sport (Rodriguez et al., 2008), and AVE (Tian et al., 2018).

4.4. Performance on UCF-101 dataset

The comparison algorithms, namely G-KM, G-LRR, G-DNLR, and G-
OKSC, employed raw frame features of the video for their experimental
results. Table 2 presents the clustering performance of all the algo-
rithms on the UCF-101 dataset across 20 independent experiments. The
proposed M-AVSC method demonstrated superior performance. More
specifically, the average accuracy, NMI, F-score, precision, recall, and
ARI of M-AVSC show improvements over the second-best method by
4%, 2%, 6%, 6%, 3%, 6%, respectively.

Fig. 3 provides a more granular view of the performance distri-
butions of all algorithms across the evaluation metrics. Notably, the
median performance of M-AVSC consistently emerged at the top eche-
lons, signifying its dominant efficacy. Moreover, the relatively narrower
interquartile range of M-AVSC across these metrics underscores its sta-
ble performance in the experiments. To shed light on the specific range
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Fig. 3. Box plot representation of clustering metrics for evaluated methods on the UCF-101.
Table 2
The average performance and standard deviation (values in parentheses) of 20 test run on the UCF-100 dataset (10 categories). The best results
are highlighted in bold.

Metrics G-KM G-LRR G-DNLR G-OKSC SRSC(V) SRSC(O) SRSC(A) M-AVSC

Accuracy 0.670(0.07) 0.680(0.04) 0.698(0.03) 0.723(0.01) 0.677(0.03) 0.705(0.03) 0.519(0.04) 0.761(0.04)
NMI 0.741(0.04) 0.769(0.02) 0.760(0.02) 0.732(0.01) 0.762(0.02) 0.756(0.02) 0.542(0.03) 0.794(0.02)
F-score 0.574(0.07) 0.621(0.02) 0.602(0.02) 0.599(0.01) 0.602(0.02) 0.622(0.01) 0.399(0.04) 0.679(0.02)
Precision 0.507(0.09) 0.563(0.03) 0.551(0.02) 0.577(0.01) 0.533(0.04) 0.579(0.04) 0.378(0.04) 0.641(0.04)
Recall 0.669(0.03) 0.694(0.03) 0.664(0.02) 0.622(0.01) 0.694(0.04) 0.672(0.03) 0.426(0.04) 0.723(0.02)
ARI 0.521(0.08) 0.576(0.03) 0.556(0.02) 0.555(0.01) 0.554(0.02) 0.578(0.04) 0.332(0.04) 0.642(0.03)
of performance achieved by M-AVSC on individual metrics: its accuracy
spanned between 0.701 to 0.847, NMI ranged from 0.753 to 0.829,
F-score varied between 0.653 to 0.702, precision is between 0.583
to 0.702, recall fluctuated from 0.634 to 0.758, and ARI oscillated
from 0.573 to 0.691. These metrics further emphasize the method’s
consistency and superior clustering performance across the board.

M-AVSC leverages multiple Riemannian manifold-valued descrip-
tors, exploiting audio-visual information and yielding better perfor-
mance. G-LRR extends low-rank representation onto Grassmann
8

manifolds, employing subspace clustering techniques for video clus-
tering tasks. As a crucial baseline, G-LRR’s clustering performance
significantly outperformed G-KM, highlighting the advantage of self-
expression-based learning methods. It is important to note that some
videos might contain additional background music or narration. Inter-
estingly, the clustering results of G-DNLR and G-OKSC exceeded G-LRR,
attributable to the introduction of structure constraint on the coeffi-
cient matrix. More complex loss functions result from more structural
constraints, requiring additional parameters to balance individual loss
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Fig. 4. Box plot representation of clustering metrics for evaluated methods on the UCF-sport.
Table 3
The average performance and standard deviation (values in parentheses) of 20 test run on the UCF-Sport dataset. The best results are highlighted
in bold.

Metrics G-KM G-LRR G-DNLR G-OKSC SRSC(V) SRSC(O) M-AVSC

Accuracy 0.703(0.08) 0.731(0.04) 0.744(0.03) 0.791(0.01) 0.744(0.06) 0.714(0.03) 0.798(0.04)
NMI 0.742(0.05) 0.764(0.02) 0.765(0.02) 0.802(0.01) 0.778(0.03) 0.744(0.01) 0.821(0.01)
F-score 0.622(0.09) 0.685(0.04) 0.684(0.03) 0.713(0.01) 0.657(0.06) 0.615(0.02) 0.732(0.03)
Precision 0.577(0.11) 0.633(0.05) 0.679(0.03) 0.698(0.01) 0.641(0.07) 0.572(0.02) 0.708(0.03)
Recall 0.682(0.06) 0.750(0.05) 0.689(0.03) 0.691(0.01) 0.676(0.04) 0.665(0.02) 0.761(0.03)
ARI 0.573(0.10) 0.645(0.04) 0.647(0.03) 0.687(0.01) 0.616(0.06) 0.571(0.02) 0.702(0.03)
terms. M-AVSC, with fewer parameters, achieved the best clustering
performance.

Compared to SRSC(A), SRSC(V) delivered better clustering perfor-
mance, underscoring the importance of visual information for clus-
tering performance. SRSC(O) show a slight performance improvement
over SRSC(V), indicating that optical flow features assist in capturing
discriminative representations in the action video dataset. The best
performance is achieved by M-AVSC, suggesting that the fusion of
multiple descriptors can enhance performance.
9

4.5. Performance on UCF-sport dataset

Table 3 showcases the comparison results of different methods on
the UCF-Sport dataset. The Grassmann manifold is a superior Rieman-
nian manifold-valued descriptor for videos. The UCF-Sport videos, shot
from different angles and spanning a wide range of scenes, present
a challenge for any classic clustering method. Interestingly, M-AVSC
outperforms other comparison methods, indicating that multiple-view
descriptors positively influence clustering performance. In this instance,
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Table 4
The average performance and standard deviation (values in parentheses) of 20 test run on the AVE dataset. The best results are highlighted in
bold.

Metrics G-KM G-LRR G-DNLR G-OKSC SRSC(V) SRSC(O) SRSC(A) M-AVSC

Accuracy 0.276(0.01) 0.260(0.01) 0.279(0.01) 0.280(0.01) 0.280(0.01) 0.281(0.01) 0.122(0.01) 0.302(0.01)
NMI 0.441(0.01) 0.380(0.01) 0.450(0.00) 0.442(0.01) 0.460(0.01) 0.417(0.01) 0.418(0.01) 0.461(0.01)
F-score 0.211(0.01) 0.192(0.01) 0.208(0.01) 0.200(0.01) 0.209(0.01) 0.199(0.01) 0.199(0.01) 0.231(0.01)
Precision 0.189(0.01) 0.169(0.00) 0.207(0.01) 0.190(0.01) 0.198(0.01) 0.200(0.01) 0.200(0.01) 0.219(0.01)
Recall 0.219(0.01) 0.200(0.01) 0.210(0.01) 0.220(0.01) 0.220(0.01) 0.196(0.01) 0.201(0.01) 0.240(0.01)
ARI 0.168(0.01) 0.148(0.01) 0.183(0.01) 0.173(0.01) 0.182(0.01) 0.171(0.01) 0.161(0.01) 0.198(0.01)
M-AVSC does not employ audio information (since UCF-Sport does
not provide audio tracks) and uses only video frame and optical flow
information. If only visual information is used, SRSC(V) is somewhat
analogous to G-LRR. However, compared to G-LRR, SRSC(V) shows
a marginal performance improvement, which could be attributed to
the utilization of the kernel method. Mapping points on the Grass-
mann manifold to Hilbert space enables the capture of a richer feature
representation. By amalgamating information from two perspectives,
M-AVSC surpasses G-LRR by 7%, 1%, 3%, 5%, 1%, and 3% in accuracy,
NMI, F-score, precision, recall, and ARI, respectively, evidencing that
optical flow is beneficial for action video clustering.

Fig. 4 provides an in-depth view of the performance distributions
of all methodologies across the evaluation performance. When exam-
ining the box plots of M-AVSC in comparison to other methods, it is
evident that M-AVSC consistently displays a higher median, reflect-
ing its performance. Additionally, a more constrained interquartile
range for M-AVSC’s box plot indicates the method’s stability, with
a significant portion of the data lying within a narrow range. The
median performance of M-AVSC consistently ranks in the upper tiers
across these metrics. Furthermore, the relatively tighter interquartile
range of M-AVSC emphasizes its consistent performance throughout the
experiments. Breaking down M-AVSC’s performance: its accuracy spans
from 0.755 to 0.870, NMI ranges from 0.806 to 0.844, F-score varies
from 0.672 to 0.792, precision is between 0.639 and 0.741, recall lies
from 0.698 to 0.822, and ARI ranges between 0.633 and 0.749. Overall,
M-AVSC displays both consistent and stable results across the board
(see Fig. 5).

4.6. Performance on AVE dataset

As the number of samples increases, the clustering performance of
many exceptional clustering methods tends to decrease significantly.
The AVE dataset is 27.6 times larger than the previous UCF-Sports
dataset. Beyond its larger scale, the AVE dataset also presents a chal-
lenge due to the presence of more complex internal scene differences.
That is, intra-class distances of videos within the same category are
notably varied.

Table 4 summarizes the best clustering performance for each com-
parison method in the corresponding experiment. It is evident that
compared to G-KM, G-LRR, G-DNLR, G-OKSC, and SRSC, which ap-
ply single-modality Riemannian manifold-valued descriptors, M-AVSC
delivers superior clustering performance. This outcome underscores
that multiple Riemannian manifold-valued descriptors can extract more
discriminative information, thereby enhancing clustering performance.
The clustering performances by G-KM, G-LRR, G-DNLR, and G-OKSC
are very similar, illustrating the challenge presented by the AVE
dataset. Despite the larger data scale, larger number of classes, and
more complex interclass relationships, G-DNLR and G-OKSC do not
yield better results, even with structural constraints imposed on the
coefficient matrix. M-AVSC, however, outperforms the second-best
method by 2%, 1%, 2%, 1%, 2%, and 2% in accuracy, NMI, F-score,
precision, recall, and ARI, respectively, thanks to the exploitation of
multiple Riemannian manifold-valued descriptors.

Fig. 5 provides a more granular view of the performance distribu-
tions of all algorithms across the evaluation metrics. To shed light on
10

the specific range of performance achieved by M-AVSC on individual
metrics: its accuracy spanned between 0.293 to 0.312, NMI ranged from
0.441 to 0.472, F-score varied between 0.220 to 0.243, precision is
between 0.200 to 0.233, recall fluctuated from 0.228 to 0.253, and ARI
oscillated from 0.184 to 0.207.

4.7. Statistical significance analysis

To further substantiate the effectiveness of our method, we con-
duct a statistical significance test. The results, as illustrated in Fig. 6,
showcase the 𝑝-values representing the clustering accuracy differences
between M-AVSC and the other compared algorithms across the three
datasets. Drawing from conventions in Fu, Yang, Chen, and Zhang
(2022), Zhong and Pun (2020), a significance level of 0.05 is em-
ployed. A 𝑝-value lower than this threshold suggests that the perfor-
mance difference between the two compared algorithms is statistically
significant.

From the visualizations in Fig. 6, it is evident that all 𝑝-values,
irrespective of the dataset, fall below the 0.05 threshold. This consis-
tency not only indicates the statistical significance of the performance
disparities between our method and the other algorithms but also
reinforces the efficacy of our approach across diverse datasets.

4.8. Ablation study

We conduct three ablation studies to assess the components of our
approach. First, we compare diverse video feature representations with
our Riemannian manifold-valued descriptors to confirm their effective-
ness. Given the nascent state of audio subspace clustering research, we
test SRSC’s capability with audio signals. Finally, we evaluate combi-
nations of our descriptors for distinct branching features, highlighting
the strength of our M-AVSC.

4.8.1. Effectiveness of the visual clustering strategy with Riemannian
manifold-valued descriptors

Feature extraction and representation are paramount in video con-
tent analysis. To comprehensively capture the video’s intricate de-
tails, various advanced feature extraction strategies are used such
as Lukas-Kanade (Baker & Matthews, 2004), Motion Boundary His-
togram (MBH) (Dalal, Triggs, & Schmid, 2006), Histogram of Ori-
ented Gradients (HOG) (Dalal & Triggs, 2005; Lowe, 2004), Histogram
of Optical Flow (HOF) (Perš, Sulić, Kristan, et al., 2010) and auto-
encoders (Ji, Zhang, Li, et al., 2017). The distinct advantage of Rieman-
nian Manifold-valued Descriptors is their ability to reduce each video
to a fixed-dimension subspace. This unique property allows for the
seamless integration of Riemannian Manifold-valued Descriptors with
clustering techniques, something that other feature extraction methods
cannot achieve.

To compare the performance of our method with other repre-
sentations, we duplicate the last frame of videos with fewer frames
repeatedly, ensuring that all videos maintain consistent dimensions.
Such videos are marked with an asterisk (*) in the table. To be consis-
tent with the SRSC method and to ensure a fair comparison, we apply
the commonly used Gaussian kernel function after extracting all the
features and ensured that the kernel matrix had a value between 0–1.
Table 5 shows the clustering performance obtained on the UCF-Sport

dataset using different feature extraction methods.
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Fig. 5. Box plot representation of clustering metrics for evaluated methods on the AVE.

Fig. 6. 𝑝-values of clustering Accuracy between M-AVSC and other methods on the three datasets.
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Table 5
Comparative performance analysis of visual feature extraction methods for clustering on the UCF-Sport dataset.

ID Feature Accuracy NMI F-score Precision Recall ARI

1 RAWa 0.477(0.03) 0.550(0.03) 0.361(0.03) 0.283(0.04) 0.508(0.06) 0.263(0.04)
2 LKa 0.542(0.04) 0.562(0.03) 0.412(0.03) 0.375(0.04) 0.462(0.04) 0.336(0.04)
3 MBHa 0.676(0.05) 0.753(0.03) 0.594(0.05) 0.514(0.06) 0.709(0.05) 0.538(0.06)
4 HOGa 0.577(0.03) 0.604(0.02) 0.486(0.03) 0.483(0.03) 0.490(0.03) 0.426(0.03)
5 HOFa 0.637(0.05) 0.705(0.03) 0.574(0.05) 0.527(0.07) 0.633(0.04) 0.519(0.06)
6 Auto-encodera 0.348(0.03) 0.379(0.02) 0.221(0.01) 0.164(0.01) 0.340(0.02) 0.095(0.01)
7 SRSC(V) 0.744(0.06) 0.778(0.03) 0.657(0.06) 0.641(0.07) 0.676(0.04) 0.616(0.06)
8 SRSC(O) 0.714(0.03) 0.744(0.01) 0.615(0.02) 0.572(0.02) 0.665(0.02) 0.571(0.02)

a Denotes frame padding is employed.
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Initially, we evaluate the raw visual features alongside LK optical
low features. Serving as our baseline, their performance, although
nsightful, remained suboptimal. To further improve the representation
f video content, we have explored a range of other feature extrac-
ion methods. Among them, MBH describes the boundary motion of
bjects and performs well in capturing dynamic changes in videos.
eanwhile, HOG and HOF are used for object detection and describing
otion patterns in video content, respectively. These methods perform
ell on certain evaluation criteria, but there is still a gap in their
erformance compared to MBH. Notably, we also experiment with an
uto-encoder that utilizes deep learning techniques. In this model, a
ully-connected layer is inserted between the encoding and decoding
ayers, and the features from this layer are directly analyzed as video
eatures. Although auto-encoders are widely acknowledged as robust
eature extraction tools in image and video analysis, their performance
n this specific context proves underwhelming. This may be due to the
hoice of model parameters. From Table 5, we observe that while MBH
chieves the best recall score, SRSC(V) demonstrates improvements
ver MBH by 6.8%, 2.5%, 6.3%, 12.7%, and 7.8% in accuracy, NMI, F-
core, precision, and ARI, respectively. Moreover, SRSC(O) also secures
econd-best performance across most of the metrics. Based on these
indings, we conclude that the visual clustering strategy employing
iemannian manifold-valued descriptors is indeed robust.

.8.2. Effectiveness of the audio signal clustering strategy with Riemannian
anifold-valued descriptors

When a visual event correlates with a prominent audio signature,
his audio can be interpreted as a label depicting the visual content.
everal classic subspace representation methods (Elhamifar & Vidal,
013; Patel & Vidal, 2014) have been dedicated to image clustering
asks, but few have ventured to apply these techniques to audio signal
lustering. To underscore the proficiency of SRSC in processing audio
ignals, we have replicated these classical methods for comparison
gainst SRSC. Two different datasets are used for this comparison to es-
ablish a more robust validation. The UrbanSound8K dataset (Salamon,
acoby, & Bello, 2014), widely used for environmental sound classi-
ication, encompasses data from 10 different categories. Additionally,
e apply the UCF-101 dataset (consisting of 10 categories), extracting

olely the audio signals from the videos as inputs for the different
odels.

For the spectrogram 𝑇 = [𝑡1, 𝑡2,… , 𝑡𝑛], where 𝑡𝑖 represents the spec-
rogram for the 𝑖th audio sequence, the clustering results of the original
udio signal can be obtained through sparse subspace representation,
ubbed as Sparse Subspace Clustering for Audio Signal (SSC(A)). The
orresponding loss function can be expressed as follows:

𝑖𝑛
𝐶

𝜆‖𝐶‖1 + ‖𝑇 − 𝑇𝐶‖

2
𝐹 , 𝑠.𝑡. 𝑑𝑖𝑎𝑔(𝐶) = 0, (42)

here 𝐶 denotes the coefficient matrix.
Furthermore, as the kernel approach aids in unveiling the nonlin-

ar structure inherent to high-dimensional data, the spectrograms are
rojected into the RKHS for a richer representation. This leads to the
efinition of Kernelized Sparse Subspace Clustering for Audio Signal
12

b

Table 6
Comparative audio clustering efficacy on UrbanSound8K and UCF-101 datasets.

(a) UrbanSound8K

Metrics SSC(A) KSSC(A) SRSC(A)

Accuracy 0.297(0.02) 0.286(0.02) 0.427(0.03)
NMI 0.242(0.02) 0.247(0.02) 0.416(0.02)
F-score 0.138(0.01) 0.150(0.01) 0.268(0.03)
Precision 0.125(0.01) 0.116(0.01) 0.252(0.02)
Recall 0.154(0.01) 0.215(0.03) 0.286(0.02)
ARI 0.030(0.01) 0.022(0.01) 0.180(0.03)

(b) UCF-101

Metrics SSC(A) KSSC(A) SRSC(A)

Accuracy 0.310(0.02) 0.330(0.02) 0.519(0.04)
NMI 0.282(0.02) 0.302(0.02) 0.542(0.03)
F-score 0.192(0.01) 0.210(0.01) 0.399(0.04)
Precision 0.180(0.01) 0.174(0.01) 0.378(0.04)
Recall 0.206(0.02) 0.267(0.03) 0.426(0.04)
ARI 0.100(0.02) 0.107(0.01) 0.332(0.04)

(KSSC(A)). Specifically, the sparse subspace representation based on
Hilbert space embedding for the spectrograms is as follows:

𝑚𝑖𝑛
𝐶

𝜆‖𝐶‖1 + ‖𝜙(𝑇 ) − 𝜙(𝑇 )𝐶‖

2
𝐹 , 𝑠.𝑡. 𝑑𝑖𝑎𝑔(𝐶) = 0. (43)

inally, we employ SRSC to address the audio signal clustering prob-
em. SSC(A) and KSSC(A) can be regarded as ablation studies for
RSC(A). For a fair comparison, all contrasted methods use the same
ata.

As shown in Table 6, the best clustering performance is achieved by
RSC(A), indicating that the strategy with Riemannian manifold-valued
escriptors is more adept at extracting discriminative information from
he audio signal. Additionally, KSSC(A) yields better clustering per-
ormance than SSC(A), possibly due to the nonlinear features present
n the spectrogram. Given that SRSC(A) yields the best clustering
erformance, we infer that the strategy adopted in the audio branch
f our multimodal Riemannian subspace clustering design is indeed
eliable.

.8.3. Different combinations of multiple Riemannian manifold-valued de-
criptors

In an effort to further validate our method’s efficacy and analyze
he fusion effects of each branching feature, we carry out ablation
xperiments. Table 7 presents the results of the ablation experiments
onducted on the UCF-101 dataset. Using information from multiple
odalities yields superior clustering performance than methods utiliz-

ng a single viewpoint (for instance, solely the video frame). When
mploying data from a single view, there is no need to utilize a fusion
trategy to obtain a shared 𝐶∗.

According to Table 7, SRSC with a single viewpoint feature oc-
asionally performs better when exploiting optical flow features as
pposed to using only the original video frame features. This is because
ptical flow features can more effectively capture the relationship
etween the sequential frames of the video. Interestingly, the best
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Table 7
Ablation study on the UCF-101 dataset. The upper part of the table presents the results of 20 independent runs of SRSC using single viewpoint
features, while the lower part of the table showcases the results of 20 independent runs of M-AVSC using multiple viewpoint features.
ID Feature Accuracy NMI F-score Precision Recall ARI

1 Video Frame 0.677(0.03) 0.762(0.02) 0.602(0.02) 0.533(0.04) 0.694(0.04) 0.554(0.02)
2 Optical Flow 0.705(0.03) 0.756(0.02) 0.622(0.01) 0.579(0.04) 0.672(0.03) 0.578(0.04)
3 Audio Signal 0.519(0.04) 0.542(0.03) 0.399(0.04) 0.378(0.04) 0.426(0.04) 0.332(0.04)
4 Video Frame+Optical Flow 0.737(0.03) 0.759(0.02) 0.632(0.03) 0.591(0.04) 0.680(0.03) 0.590(0.04)
5 Video Frame+Audio Signal 0.735(0.05) 0.785(0.02) 0.668(0.03) 0.636(0.04) 0.704(0.02) 0.631(0.04)
6 Optical Flow+Audio Signal 0.704(0.06) 0.760(0.03) 0.628(0.04) 0.592(0.05) 0.668(0.04) 0.585(0.05)
7 Video Frame+Optical Flow+Audio Signal 0.761(0.04) 0.794(0.02) 0.679(0.02) 0.641(0.04) 0.723(0.02) 0.642(0.03)
Fig. 7. Performance trade-off between runtime and accuracy for various clustering
methods on the UCF-101 dataset.

performance is not achieved by clustering the video using only its audio
signal.

For the clustering performance that incorporates information from
multiple viewpoints, there is a trend that increasing the number of
viewpoints can improve the clustering performance. Compared to em-
ploying only the video frame, using both video frame and audio in-
formation improves accuracy, NMI, F-score, precision, recall, and ARI
by 6%, 3%, 7%, 11%, 1%, and 8%, respectively. This supports the
cognitive behavior study asserting that the application of both audio
and visual information can lead to more accurate inferences.

The optimal clustering performance is achieved by employing the
raw frame + optical flow + audio signal. This suggests that using these
features can complement each other effectively, thereby enhancing the
clustering performance.

4.9. Timing experiments

As illustrated in Fig. 7, although M-AVSC has a slightly longer
execution time, it achieves the highest accuracy among all the com-
pared methods, with a score of 0.761. This emphasizes its ability to
ensure high performance while maintaining relative efficiency. The
marked improvement of M-AVSC over the unimodal SRSC accentuates
the pivotal role of audio-visual data integration in video clustering. As
for the trade-off between fast execution and accuracy, SRSC(V) is the
fastest but its accuracy is relatively low. Overall, M-AVSC demonstrates
significant advantages in the realm of video clustering.

4.10. Parameter selection

This section discusses the parameter selection for M-AVSC, which
primarily includes 𝜆 and 𝜔(𝑣). 𝜔(𝑣) is adaptively adjusted by the in-
verse of the distance. Initially, we assign the same value 𝜇 to all
constraints (𝜇1 and 𝜇2). A grid search technique is employed to fine-
tune parameters 𝜇 and 𝜆. We designate 𝜇 as one of the values in the
13
set [10,30,50,70,90,150,200,500] and 𝜆 as one of the values in the
set [0.1,0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]. We subsequently arrange and
combine the values of parameters 𝜇 and 𝜆 to generate a ‘‘grid’’. Fig. 8
illustrates the impact of adjusting both 𝜇 and 𝜆 on the algorithm’s
clustering accuracy, showing that M-AVSC is not highly sensitive within
the corresponding value range.

The loss function Eq. (19) includes only one equilibrium parameter,
𝜆. Here, we fix 𝜇 at 50 for all datasets and then modify the size of 𝜆.
Fig. 9 depicts the accuracy scores achieved by adjusting the parameter
𝜆 on the three datasets. We establish 𝜆 as 0.35, 0.6, and 0.65 for the
UCF-101, UCF-sport, and AVE datasets, respectively. The variation of
the adaptive parameters 𝜔(𝑣) per iteration is represented in Fig. 10.
The red line shows the weight of each iteration from 𝐶1 through the
raw frame, the blue line signifies the weight of each iteration from 𝐶2

through the optical flow, and the black line demonstrates the weight
of each iteration from 𝐶3 through the auditory information. As Fig. 10
exhibits, similar to the ablation study, the weight value of 𝐶3 does
not attain higher weights, which are generally assigned to 𝐶1 and 𝐶2.
As an example, the performance of SRSC(O) in Table 2 is higher than
SRSC(V), and the weights 𝜔(𝑣) assigned to 𝐶2 in Fig. 10(a) is higher
than 𝐶1, which indicates that adaptive weights can work well. Most
notably, the adaptive parameter 𝜔(𝑣) gradually converges to a specific
interval as the number of iterations increases.

4.11. Convergence analysis

Despite Eq. (23) not being a jointly convex problem across all
variables, and thus a global optimal solution still standing as an un-
resolved issue, we tackle Eq. (23) by employing ADMM (Algorithm 2).
Given that each sub-problem is convex, we obtain optimal solutions
for each, thereby achieving notable convergence with Algorithm 2. The
convergence of each sub-problem is expounded upon as follows.

To optimize variables separately, we introduce auxiliary variables
𝐶 (𝑣)
1 , 𝐶 (𝑣)

2 , and 𝐴(𝑣) while updating 𝐶 (𝑣)
1 , 𝐶 (𝑣)

2 , and 𝐴(𝑣), which simplifies
the acquisition of their closed-form solutions.

Similarly, when updating 𝜔(𝑣), we can deduce the closed-form solu-
tion of 𝜔(𝑣) by resolving Eq. (18), which poses as a linear function of
𝜔(𝑣).

Consequently, we need only validate that Algorithm 2 converges
for 𝐶∗. An update to 𝐶∗ delivers a closed-form solution, and the
convergence can also be established based on the lemma below.

Lemma 1. For any non-zero matrix 𝑃 ∈ 𝑅𝑛×𝑛 and 𝑄 ∈ 𝑅𝑛×𝑛, the
subsequent inequality is upheld:

‖𝑃‖𝐹 −
‖𝑃‖2𝐹
2‖𝑄‖𝐹

≤ ‖𝑄‖𝐹 −
‖𝑄‖

2
𝐹

2‖𝑄‖𝐹
. (44)

Theorem 1. In every iteration of Algorithm 2, the update 𝐶∗ will diminish
the value of the objective function until it converges.

Proof. Let the 𝑡th and (𝑡+1)-th iteration results of the shared coefficient
matrix be denoted by 𝐶 and �̂� , respectively. We can infer:
𝑏
∑ ‖𝐶 (𝑣) − �̂�∗

‖

2
𝐹

(𝑣) ∗ 2
≤

𝑏
∑ ‖𝐶 (𝑣) − 𝐶∗

‖

2
𝐹

(𝑣) ∗ 2
. (45)
𝑣=1 2‖𝐶 − 𝐶 ‖𝐹 𝑣=1 2‖𝐶 − 𝐶 ‖𝐹
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Fig. 8. The effect of changing the parameters 𝜇 and 𝜆 on the accuracy of clustering. (a) Clustering accuracy with the parameter 𝜇 and 𝜆 varying on the UCF-101; (b) Clustering
accuracy with the parameter 𝜇 and 𝜆 varying on the UCF-sport; (c) Clustering accuracy with the parameter 𝜇 and 𝜆 varying on the AVE.

Fig. 9. Parameter selections in three dataset experiment. (a) Clustering accuracy with the parameter 𝜆 varying on the UCF-101; (b) Clustering accuracy with the parameter 𝜆
varying on the UCF-sport; (c) Clustering accuracy with the parameter 𝜆 varying on the AVE.

Fig. 10. The change of the parameter 𝜔(𝑣) at each iteration on three different datasets.

Fig. 11. The convergence curve of M-AVSC on three datasets. Each subfigure has the 𝑥-axis representing the number of iterations and the 𝑦-axis symbolizing the sum of normalized
errors across three views for M-AVSC.
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As per Lemma 1, we deduce:
𝑏
∑

𝑣=1
‖𝐶 (𝑣) − �̂�∗

‖ −
𝑏
∑

𝑣=1

‖𝐶 (𝑣) − �̂�∗
‖

2
𝐹

2‖𝐶 (𝑣) − 𝐶∗
‖

2
𝐹

≤
𝑏
∑

𝑣=1
‖𝐶 (𝑣) − 𝐶∗

‖ −
𝑏
∑

𝑣=1

‖𝐶 (𝑣) − 𝐶∗
‖

2
𝐹

2‖𝐶 (𝑣) − 𝐶∗
‖

2
𝐹

.

(46)

By summing both Eqs. (45) and (46) over both sides, we establish:
𝑏
∑

𝑣=1
‖𝐶 (𝑣) − �̂�∗

‖ ≤
𝑏
∑

𝑣=1
‖𝐶 (𝑣) − 𝐶∗

‖, (47)

thereby completing the proof.

Convergence of the algorithm is additionally confirmed through
experimentation. We examine convergence by verifying the following
constraints in each iteration 𝑘: {𝐴(𝑣)

𝑘 − 𝐴(𝑣)
𝑘−1}∞ ≤ 𝜀, {𝐴(𝑣) − 𝐶 (𝑣)

1 +
𝑖𝑎𝑔(𝐶 (𝑣)

1 )}∞ ≤ 𝜀, {𝐴(𝑣)−𝐶 (𝑣)
2 }∞ ≤ 𝜀, where 𝑣 = 1,… , 𝑏. In the conducted

xperiments, we set the maximum value𝑇 = 50 and the convergence
rror tolerance 𝜖=0.001. Fig. 11 illustrates the errors of the three views
𝐴(𝑣)
𝑘 −𝐴(𝑣)

𝑘−1}∞, {𝐴(𝑣)−𝐶 (𝑣)
1 +𝑑𝑖𝑎𝑔(𝐶 (𝑣)

1 )}∞, {𝐴(𝑣)−𝐶 (𝑣)
2 }∞. The errors are

ormalized and summed across three views. The results reflect that the
urve undergoes a sharp decline after 20 iterations before stabilizing,
hereby showcasing the impressive convergence of the algorithm.

. Conclusion

In the realm of real-world scenarios, audio and visual modalities
nherently interplay to provide a more comprehensive and enriched
epresentation of the environment. This study delves into the amal-
amation of these modalities, aiming to harness the joint power of
udio-visual data for enhanced video clustering. In this paper, we
ropose a single-modality Riemannian subspace clustering technique
nd later expand it to a multi-modality approach, uniquely emphasizing
he fusion of audio-visual data. This method is a marked departure
rom its predecessors as it accentuates the significance of audio-visual
ata fusion in video clustering, underpinned by our novel loss function
ailored for shared coefficient matrices.

In evaluations conducted on three distinct video datasets, our pro-
osed M-AVSC method demonstrated superior performance in video
lustering compared to existing methods. This enhanced performance is
ttributed to the effective application of multiple Riemannian manifold-
alued descriptors, which successfully encapsulate multimodal video
nformation within a unified structure. Additionally, extensive parame-
er testing confirmed the stability of our method across a wide range of
arameter settings. While our methods effectively utilize audio-visual
ynergy, they rely on predefined manifold-based representations, which
ay not fully capture the varying complexities of diverse real-world
ata. Considering this, we would like a fusion of Grassmann manifolds
ith deep learning architectures in the future. Such an integration,
specially with structures like convolutional autoencoders, promises
more adaptable and scalable method for data representation and

rocessing.
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nnex A. Definition of Grassmann manifolds.

Generally, a manifold is considered a topological space whose local
eighborhood is approximated as a Euclidean space (Absil, Mahony, &
epulchre, 2009). Two typical manifolds are regarded as quotients of
he special orthogonal group 𝑝 are the compact Stiefel manifold and
he Grassmann manifold (Absil, Mahony, & Sepulchre, 2004; Edelman,
rias, & Smith, 1998), where 𝑝 is the smooth differential manifold

Lie group structure) of all 𝑝 × 𝑝 orthogonal matrices with determinant
1 (subspace of the orthogonal group (𝑑)).

efinition 1. The Stiefel manifold (𝑑, 𝑝), 𝑑 ≥ 𝑝, is a Riemannian
anifold composed of all 𝑑 × 𝑝 orthonormal matrices {𝑌 ∈ R𝑑×𝑝 ∶
𝑇 𝑌 = 𝐼𝑝}, where 𝐼𝑝 denotes the 𝑝 × 𝑝 identity matrix.

In contrast to the Stiefel manifold, the basis selection for the sub-
pace of the Grassmann manifold is non-unique. A point on the Grass-
ann manifold, 𝑝,𝑑 , is a 𝑝-dimensional linear subspace of the 𝑑-
imensional Euclidean space, identified by an orthogonal basis. All
rthonormal matrices that span the same subspace are considered
quivalent, which allows interpretation of each point on the Grassmann
anifold as an equivalent point on the Stiefel manifold.

efinition 2. A point on the Grassmann manifold can be represented
y an orthonormal matrix 𝑌 ∈ R𝑑×𝑝, where the columns span the

corresponding subspace.
Consequently, we can deduce the Stiefel representation of the Grass-

mann manifold:

𝑝,𝑑 = {𝑠𝑝𝑎𝑛(𝑌 ) ∶ 𝑌 ∈ R𝑑×𝑝 ∶ 𝑌 𝑇 𝑌 = 𝐼𝑝}. (48)

The Grassmann manifold possesses a Riemannian structure that
llows for the performance of calculus operations. Given that the Grass-
ann manifold is smooth and curved, applying the Euclidean metric
irectly would be inappropriate. The commonly used distance mea-
ure on the Grassmann manifold is the embedding distance (Harandi,
anderson, Shen, et al., 2013).

nnex B. Definition of SPD manifolds.

Symmetric positive definite matrices are well-known for their pow-
rful representation capabilities. These can be obtained by constructing
covariance matrix of image features. It is important to note that

he symmetric positive definite matrix contains a Riemannian manifold
tructure, making the SPD matrix space non-linear.

efinition 3. For a space of 𝑑 × 𝑑 SPD matrices, denote as 𝑆𝑦𝑚+
𝑑 , the

athematical expression of the SPD manifold is:

𝑦𝑚+
𝑑 = {𝑆 ∈ R𝑑×𝑑 ∶ 𝑥𝑇𝑆𝑥 > 0,∃𝑥 ∈ R𝑑 − {0𝑑}}. (49)

iven that 𝑆𝑦𝑚+
𝑑 forms a convex cone within the 𝑑2 dimensional

uclidean space, the Riemannian metric serves as a more accurate
istance measure on 𝑆𝑦𝑚+

𝑑 . Generally, there are two popular Rieman-
ian metrics proposed on 𝑆𝑦𝑚+

𝑑 , which include the affine-invariant
iemannian metric (Pennec, Fillard, & Ayache, 2006) and the log-
uclidean Riemannian metric (Arsigny, Fillard, Pennec, et al., 2005,
006).
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