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Abstract: The few-shot named entity recognition (NER) task aims to train a robust model in the source domain and transfer it to the target 
domain with very few annotated data. Currently, some approaches rely on the prototypical network for NER. However, these approaches 
often overlook the spatial relations in the span boundary matrix because entity words tend to depend more on adjacent words. We propose 
using a multidimensional convolution module to address this limitation to capture short-distance spatial dependencies. Additionally, we uti‐
lize an improved prototypical network and assign different weights to different samples that belong to the same class, thereby enhancing 
the performance of the few-shot NER task. Further experimental analysis demonstrates that our approach has significantly improved over 
baseline models across multiple datasets.
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0　Introduction

Named Entity Recognition (NER) stands as a cor‐
nerstone in natural language processing and represents a 
fundamental undertaking. The principal objective re‐
volves around the discernment of entity spans nestled 
within sentences and their subsequent categorization 
into precise classes. These classes encompass a spec‐
trum of designations, notably encompassing but not lim‐
ited to Person, Organization, and Location. As a tradi‐

tional sequence labeling task, NER provides essential 

technical support for downstream applications such as 

information extraction, knowledge graphs, and text sum‐

marization.

The NER task has undergone several significant 

evolutions since its inception. In the early stages, the 

rule-based and dictionary-based approaches gained con‐

siderable traction. This method relies too heavily on do‐

main experts to formulate rules and templates that may 

must be revised when dealing with complex linguistic 
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expressions and diverse inputs. As machine learning has 
progressed, statistically based methods have emerged. 
As a quintessential statistical approach, conditional ran‐
dom fields [1] have demonstrated the capability to address 
intricate sequence annotation tasks by modeling the in‐
terdependencies among markers. However, despite this 
progress, these methods must be improved when effec‐
tively identifying intricate patterns. As the volume of 
trainable data grows and computer arithmetic capabili‐
ties improve, existing approaches have yielded promis‐
ing results through deep learning. The researchers con‐
structed the model using a more complex network struc‐
ture, significantly improving model performance. In ad‐
dition, existing supervised and unsupervised methods 
rely too heavily on the amount of annotated data. How‐
ever, in real-world scenarios, NER systems frequently 
encounter the need to rapidly adapt to new entity types 
not encountered during training. This adaptation is typi‐
cally accomplished through fine-tuning the original 
model, thereby enabling the system to perform effec‐
tively in the new domain.

Researchers have proposed few-shot learning to es‐
tablish innovative concepts with a limited number of in‐
stances. In this approach, the model is initially trained 
within a richly-resource domain and transposed to a 
scarce-resource domain for specific missions. The model 
must quickly adapt to the data distribution within the tar‐
get domain, relying on a sparse set of annotated data. 
Currently, few-shot learning is typically trained using 
the N-way K-shot pattern, where N represents the num‐
ber of classes, and K represents the number of samples 
per class. Figure 1 illustrates an example of 2-way 1-
shot instances in the target domain. Two samples of the 
target domain with labels, each containing only one en‐
tity type, were given. The objective is to recognize enti‐
ties within the query example.

Currently, few-shot NER methods can be broadly 
categorized into two main types. One-stage methods 

classify individual words in a sentence directly by ana‐
lyzing the feature distribution of the constructed classes. 
Fritzler et al[2] represented class prototypes by averaging 
tokens with the same label and categorizing them based 
on the distance from the prototype. Yang et al[3] utilized 
the transfer matrix instead of retraining the conditional 
random fields (CRF) model of the target domain and 
classified it by the k nearest neighbor (kNN) algorithm. 
Figure 2 shows the traditional method based on kNN. 
The value of k significantly influences the classification 
decision. Das et al [4] optimized the distribution distance 
between tokens of the same category through contrastive 
learning and utilized Gaussian distribution embeddings 
to differentiate labeling categories. Unlike the one-stage 
approaches, the two-stage method places more emphasis 
on the recognition of entity spans, and most of this work 
is based on a prototypical network[5]. They assume that 
each entity type belongs to a prototype for training and 
uses the kNN method for classification. Wang et al [6] for‐
mulated the classification problem as a span-level match‐
ing problem and decomposed it into a series of span pro‐
cesses. Ma et al [7] utilized meta-learning to train the span 
detector, aiming to discover a universal parameter initial‐
ization that can swiftly adapt to new entity classes. 
Wang et al [8] introduced a global boundary matrix and 
adjusted span representations through prototypical learn‐
ing. Li et al [9] take different combinations of type names 
and support samples as contrast and use type-aware fil‐
tering strategies to remove spans that are far from the tar‐
get domain.

Despite remarkable advancements, current methods 
continue to grapple with challenges when confronted 
with few-shot NER. First, as with other sequence label‐
ing issues, entity categories can be notably influenced by 
neighboring words, culminating in what is widely ac‐
knowledged as the short-range dependency issue. In 
practical terms, entity tokens seldom appear in isolation 
but manifest consecutively. There are also smoothing-
based [10] methods used to address model overconfidence Fig. 1　A 2-way 1-shot example in the target domain

Fig. 2　The traditional classification method based on kNN
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by spreading the probability of the span matrix over the 
span of neighboring entities. In pursuit of new solutions, 
we intend to capture the spatial intricacies of the bound‐
ary matrix via a multiscale convolutional approach and 
assign different convolutional kernel weights according 
to the actual situation. Subsequently, we aim to merge 
the results before and after convolution using a residual 
network[11]. This strategy is devised to discern and delin‐
eate a greater number of neighboring entities, thus en‐
hancing the model 􀆳s accuracy in NER. Referring to pre‐
vious models, the selection of prototypes typically in‐
volves averaging samples belonging to the same class, 
assuming equal contribution from all samples to the pro‐
totype. However, in practical scenarios, different sample 
points contribute to the prototype to varying extents, 
thus requiring the allocation of distinct weights to each 
sample point.

In summary, in this work, we design a two-stage 
framework. In the first stage, we pass through a biaffine 
layer to generate the entity boundary matrix, which aids 
in determining the position of the entities in the sen‐
tence. To extract span matrix spatial features, we use 
multiscale convolution to construct the spatial relations 
of the fractional matrix, and the label smoothing effect is 
also achieved, which can better identify nested entities. 
In the second stage, we improve the prototypical net‐
work and assign different weights to different samples   
based on the KL divergence between distributions.

Our contributions can be summarized as follows:
1) We propose a novel, robust framework to tackle 

the problem of NER in resource-constrained scenarios.
2) We utilize multiscale convolution for feature ex‐

traction on the spatial dimension of the bounding matrix 
and use a weighted prototypical network for categoriz‐
ing.

3) The experimental results validate the framework􀆳s 
effectiveness in few-shot settings. Compared with the 
benchmark models, the F1 score of our framework 
shows a good improvement in different settings.

1　Related Work

1.1　Meta-Learning

Researchers have proposed the concept of few-shot 
learning to drive the application of machine learning in 
scenarios with extremely scarce sample data [12]. Meta-
learning, a popular paradigm for few-shot learning, aims 
to discover an optimal set of parameters that enable the 

model to rapidly adapt to new tasks. Finn et al[13] rede‐
fined the gradient descent algorithm and designed a 
model-agnostic meta-learner. Li et al[14] concurrently 
trained initial parameters update direction and step size 
based on the foundation of model-agnostic meta-
learning (MAML). Jiang et al[15] introduced an attention-
based meta-learning approach for unknown tasks and ap‐
plied it to the field of NLP. Subsequently, meta-learning 
has been widely applied to address problems with lim‐
ited data, such as machine translation[16,17] and text classi‐
fication[18-20].

1.2　Few-Shot NER

Hou et al[21] introduced a collapsed dependency 
transfer mechanism into CRF to transfer abstract label 
dependency patterns as transition scores. Ji et al[22] con‐
structed a dispersed and distributed prototype-enhanced 
entity-level prototypical network. Chen et al [23] em‐
ployed limited labeled samples for class-incremental 
learning and generated synthetic data for pre-existing 
classes using a source domain model. Wang et al [24] 
transformed data representation from a high-resource to 
a low-resource domain through data augmentation [25]. 
Zhou et al [26] utilized the high-quality augmented data 
generated by the model to provide rich knowledge of en‐
tity regularities. Zhang et al [27] utilized prompt templates 
containing entity category information to construct label‐
ing prototypes, enhancing the model􀆳s suitability for mi‐
gration.

2　Method

Figure 3 illustrates the framework diagram of our 
approach. The model is first trained to generate a span 
matrix on the support set and then classified it using 
class prototypes. We first introduce the preliminaries. 
Then, we discuss how to obtain a boundary matrix with 
multiscale convolution and use a weight prototypical net‐
work to classification.

2.1　Preliminaries

In this stage, we formulate a few-shot named entity 
recognition as a span-based sequence labeling task. 
Given an input sequence X ={xi }

L
i = 1 of length L, we aim 

to identify all entity spans M ={(sjej ) L'

j = 1
} and classify 

them into corresponding labels Y ={yt }
n
t = 1, where, xi is 

the i-th token, sj /ej denotes the start/end position for the 
j-th span, L' is the number of spans in the sentence, and 
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yt is the t-th entity type in the label set Y. We use stan‐

dard N-way K-shot settings and divide data in the source 

domain as training episodes ε train = {(S trainQ trainT train )}, 
where S train = (XsMsYs ) denotes the support set, Q train =
(XQMQYQ ) denotes the query set, and T train = Y trainÈO is 

the corresponding type set. We use a similar method to 

construct the target domain data for the testing process 

to validate the model 􀆳 s performance on the novel do‐

main. Given some novel episodes εnovel =
{(SnovelQnovelTnovel )}, where SnovelQnovel represent the sup‐

port and query sets in the novel domain, Tnovel is the 
novel-type set. We expect to use a few support sets Snovel 
to fine-tune the model and make predictions on the 

query set Qnovel. In general, T trainÇ Tnovel =Æ.

2.2　Entity Span Extractor

As a classic two-stage approach, we only extract all 

candidate entity spans from the sentences without classi‐

fying them in this stage. Given an input sequence X =
{xi }

L
i = 1 from the support set S train, we first utilize a pre-

trained model to encode the input tokens into well-

initialized embeddings H ={hi }
L
i = 1.

[h1h2hL ]=PLM([x1x2xL ]) (1)

where HÎL ´ h' denotes the hidden layer output of pre-

trained encoder, h' denotes the hidden size. After obtain‐

ing the contextual representation, we use two separate 
feedforward neural networks to create different represen‐

tations hs
j /h

e
j  for the start/end positions of the j-th span 

and then adopt a Biaffine Layer [10,28] to get the predicted 

score matrix:
Px = hs

jWahe
j +Wb (hs

jÅhe
j )+ bm (2)

where, WaWb are the trainable parameters, bm denotes 

the bias.

Considering that the labels in the support set are 

visible, we use a global boundary matrix to represent the 

ground truth of the training process.

Ωsjej
=

ì

í

î

ïïïï

ïïïï

1 sj ≤ ejÙ (sjej )ÎM

0 sj ≤ ejÙ (sjej )ÏM

-inf sj > ej

(3)

where sj /ej denotes the start/end position for the j-th 

span, Ωsjej
 is the score of the span (sjej), M denotes the 

spans in a sentence that belong to entity types.
Since neighboring cells in the span matrix affect 

each other, so we use CNN with three-dimensional con‐

volutional kernels for spatial modeling. Considering the 

effect of distance on span labels, we assign different 

weighting factors to these convolutions.

Cx1 =GeLU(LayerNorm(Conν2d(Px ))) (4)

Cx =Cx1λ1 +Cx2λ2 +Cx3λ3 (5)

where {λ1λ2λ3 } represent the proportion of results for 

three different scales of convolution,Cx indicates the fi‐

nal summed result.

Considering that most of the words in the sentence 

Fig.3  The framework of our proposed
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belong to nonentities and the categories are imbalanced 

among other entities, we followed Wang et al[8] to use 

the span-based cross-entropy loss function to constrain 

the boundary information on each training support set. 

The aim is to encourage the model to be more focused 

on hard-to-classify samples during training by reducing 

the weights of easy-to-classify samples.

Lspan = log (1 + ∑
1 ≤ ej≤ sj≤ L

exp ((-1)
Ωsjej (Px +Cx )))   (6)

3.3　Span Classification

In this phase, our objective is to categorize the 

spans generated earlier. The traditional prototypical net‐

work averages all samples belonging to the same cat‐

egory to obtain the prototype[5, 29]. Considering that differ‐

ent sample points have different degrees of contribution 

to the class prototype, we design a new prototypical cal‐

culation method. Given a test set S ={st }
T
t = 1, where st rep‐

resents a collection of all samples belonging to the same 

class, xi represents one of the samples. We measure the 

difference in distribution between samples xi and the st 

using KL divergence, where the weight of sample x can 

be measured by the distribution changes when the 

sample is not present in the test set.

DKL (xi )=DKL [st|| st - xi |] (7)

We use the KL divergence as the weight of the 

sample x. When the KL divergence between all samples 

st and the sample distribution without xi is smaller, it 

proves that the sample point contributes less to the proto‐

type, and the corresponding weight is smaller.

W ( xi) =DKL( xi) (8)

Class prototypes can be calculated by the product 

of weights and sample points as follows:

ck =
∑
i = 1

|sk|

W (xi ) fϕ (xi )

∑
i = 1

|sk|

W (xi )

(9)

where ck represents the prototype of class k, and fϕ (xi ) 

describes the sample features mapped to a high-

dimensional space.

Finally, we optimize the model by the cross-

entropy loss function.

Ldis =-log 
1
T∑i = 1

T exp ( )-d ( )fϕ( )x̂ ck

∑k
  exp ( )-d ( )fϕ( )x̂ ck

  (10)

where x̂ indicates a new sample to be tested.

3　Experiments

In this section, we present a comparison of our 
method with the existing few-shot NER framework. De‐
tailed descriptions of the training settings and the final 
results are provided in the subsequent sections.

3.1　Settings

1) Datasets
To evaluate the generalization effect of the model 

in different domains, we conduct experiments on several 
public NER datasets, and split them into two groups. 
Table 1 presents the summary statistics of the datasets.

Few-NERD[30] is a novel NER dataset created using 
data from Wikipedia and designed for few-shot learning 
scenarios. Unlike previous datasets, it is annotated with 
a hierarchy of 8 coarse-grained and 66 fine-grained en‐
tity types. To validate the impact at different entity 
granularities, the researchers further divided the data 
into two categories, i.e., Inter and Intra.

Cross-NER contains four datasets from different 
fields, including the CoNLL-03 [31] dataset from the news 
domain, the WNUT-17 [32] dataset from the social do‐
main, the OntoNotes [33] dataset from the general domain, 
and the GUM [34] dataset from the Wiki domain.

2) Hyperparameters
We used the BERT-base [35] as the backbone encoder 

to initialize the word vector. The Baffine decoder with 
the affine layers of hidden size 150 and dropout rate 0.2. 
The learning rate was searched between 2E−5 and 5E−6 
on the randomly initialized weights. We chose Ad‐
amW [36] as our optimizer with a linear warm-up in the 
first 10% steps and a weight decay of 0.1. The batch size 
is set to 8, and the max sequence length is set to 128. We 
have chosen {3, 5, 7} as the convolution kernel size of 
the boundary matrix, and the corresponding weights of 
the three types of convolutions are {0.6, 0.3, 0.1}. We 
chose PyTorch as our development environment with 

Table 1　Summary statistics of each dataset

Datasets

Few-NERD

Cross-NER

GUM

OntoNotes

CoNLL-03

WNUT-17

Domain

Wikipedia

Wiki

General

News

Social

Type

66

11

18

4

6

Sentence/103

188.2

3.5

76.7

20.7

5.7
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version 1.8, and the model was trained on an RTX 3090 

GPU.

3) Baselines

We compared existing competitive few-shot NER 

models, such as ProtoBERT[5], Matching Network[37], 

StructShot and NNShot[3], ESD[6], CONTaiNER[4], L-

TapNet+CDT[21], DecomMeta[7], SpanProto[8], and Tad‐

NER[9].

3.2　Main Results

Table 2 compares our model with other baseline 

models on the Few-NERD dataset. 

1) Our model significantly outperforms TadNER in 

both Inter and Intra tasks. Notably, the performance in 

the Inter task surpasses that in the Intra task, indicating 

that Few-shot NER presents more significant challenges 

under coarse-grained conditions.
2) Across all experimental results, the performance 

of 1-2 shots are worse than that of 5-10 shots, mainly be‐

cause fewer samples are more accessible to selection 

bias. The model will show a good classification effect 

when the selected sample points are closer to the real 

class prototype. However, this uncertainty of the sample 

point makes it difficult for the model to find that point in 

most cases.

3) All span-based methods outperform token-based 

methods in our experiments.

Table 3 displays the model􀆳s performance on Cross-

NER. The results indicate that our model also performs 

well in cross-domain data and exhibits a 1.35% and 

1.48% improvement compared to the baseline. This un‐
derscores the strong adaptability of our approach.

Figure 4 shows the impact of the number of fine-
tuning steps on the F1 score. It can be observed that the 
model already performed well without fine-tuning. As 

the fine-tuning steps increase, the model 􀆳s performance 
continues to improve, which indicates that our model 
has strong domain transfer capabilities.

Table 2　F1 scores with standard deviations on Few-NERD for both inter and intra settings

Model

ProtoBERT

NNShot

StructShot

CONTaiNER

ESD

DecomMeta

SpanProto

TadNER

Ours

Intra

1-2-shot

5-way

23.45

31.01

35.92

40.43

41.44

52.04

52.19

60.78

52.14

10-way

19.76

21.88

25.38

33.84

32.29

43.50

44.03

55.44

46.83

5-10-shot

5-way

41.93

35.74

38.83

53.70

50.68

63.23

67.76

67.94

69.21

10-way

34.61

27.67

26.39

47.49

42.92

56.84

59.97

60.87

61.74

Inter

1-2-shot

5-way

44.44

54.29

57.33

55.95

66.46

68.77

71.30

64.83

71.84

10-way

39.09

46.98

49.46

48.35

59.95

63.26

65.24

64.06

64.54

5-10-shot

5-way

58.80

50.56

57.16

61.83

74.14

71.62

77.47

72.12

78.67

10-way

53.97

50.00

49.39

57.12

67.91

68.32

73.94

69.94

75.69

Table 3　F1 scores with standard deviations on Cross-NER

Model

Matching Network

ProtoBERT

L-TapNet+CDT

DecomMeta

SpanProto

Ours

1-shot

CoNLL-03

19.50

32.49

44.30

46.09

46.92

48.57

GUM

4.73

3.89

12.04

17.54

16.40

17.56

WNUT-17

17.23

10.68

20.80

25.14

27.67

28.92

OntoNotes

15.06

6.67

15.17

34.13

35.86

37.22

5-shot

CoNLL-03

19.85

50.06

45.35

58.18

58.59

60.38

GUM

5.58

9.54

11.65

31.36

34.86

35.97

WNUT-17

6.61

17.26

23.30

31.02

30.22

32.48

OntoNotes

8.08

13.59

20.95

45.55

46.97

47.73
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3.3　Ablation Study

To verify the role of each module in the model, we 
design the following ablation experiment.

1) w/o. Multiscale Convolution, where we remove 
the multidimensional convolution module and directly 
use the span range matrix generated by the biaffine mod‐
ule for subsequent work.

2) w/o. Entity Span Extractor, where we do not ex‐
tract entity spans but employ a traditional token-based 
prototypical network to train the model.

3) w/o. WeightProto Learning, where we use the 
kNN algorithm to classify the candidate span.

As depicted in Table 4, each component positively 
contributes to the model 􀆳s performance. The removal of 
the multiscale Convolution module leads to a 2.57% de‐
crease in the model􀆳s F1 score, underscoring the signifi‐
cance of spatial characterization within the boundary ma‐
trix. Furthermore, the span-based model surpasses the 
token-based approach in terms of efficacy, aligning with 
the comparative effectiveness observed across various 
domains. Finally, we opted for a weight-based prototype 
model. During the initialization phase, we embed in‐
stances randomly and assign different weights to mul‐
tiple instances through model training. Experimental re‐
sults demonstrate that our approach yields promising 

outcomes.

3.4　Visualization

Considering that the above experimental results 
cannot visualize the distribution of each entity class after 
model training, we use t-distributed Stochastic Neighbor 
Embedding (t-SNE)[38] to downsize the high-dimensional 
vectors. It is evident from Fig. 5 that our method makes 
the distribution of spans belonging to the same entity 
class more concentrated and the class spacing clearer, 
which also reflects the superiority of our framework.

4　Conclusion

We have introduced a comprehensive framework 
with the aim of addressing the challenge of identifying a 
limited set of named entities within a particular domain. 
Our empirical evaluations indicate that the two-stage 
methodology demonstrates superior performance com‐
pared to prevailing one-stage techniques. To thoroughly 
explore the spatial correlations among neighboring 
spans, we employ a multiscale convolution mechanism 
to facilitate the rationalization of spatial information 
within the entity span matrix. This information is subse‐
quently integrated with the original data through a re‐
sidual module, thereby enhancing the model 􀆳 s capacity 
to discern short-range dependencies. Considering that 
different samples have different degrees of contribution 
to the prototype, we propose an improved prototype cal‐
culation method to measure the importance of each 
sample by the KL divergence of the sample distribution. 
Extensive experimentation validates the efficacy of our 
proposed method by substantially outperforming the 
baseline.

Fig. 5　t-SNE visualization of our framework on the Few-

NERD dataset with 5-way 5-10-shot settings

Table 4　F1 score for ablation study over different 

components on Cross-NER datasets with 5-way 1-shot setting

Method

Ours

1) w/o. Multiscale Convolution

2) w/o. Entity Span Extractor

3) w/o. WeightProto Learning

CoNL

L-03

48.57

46.84

33.64

31.67

GUM

17.56

15.29

10.44

16.02

WNU

T-17

28.92

25.34

23.26

27.39

Onto

Notes

37.22

34.51

25.37

32.48

Fig. 4　The effectiveness of fine-tuning
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