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Abstract

Vision-language-navigation(VLN) is a challenging task that requires a robot to autonomously move to a destination based on
visual observation following a human’s natural language instructions. To improve the performance and generalization ability,
the pre-training model based on the transformer is used instead of the traditional methods. However, the pre-training model
is not suitable for sustainable computing and practical application because of its complex computations and large amount of
hardware occupation. Therefore, we propose a slight pre-training model through knowledge distillation. Through knowledge
distillation, the plenty of knowledge encoded in a large “teacher” model can be well transferred to a small “student”
model, which greatly reduces the model parameters and inference time while maintaining the original performance. In the
experiments, the model size is reduced by 87%, and the average inference time is reduced by approximately 86%. It can be
trained and run much faster. At the same time, 95% performance of the original model was maintained, which is still better

than the traditional VLN models.

Keywords Natural language processing - Computer vision - Cross-modality - Deep learning

1 Introduction

Learning to navigate in a visual environment following
natural language instruction, the model should be trained
to fuse textual and visual information. The specific VLN
process [1] is shown in Fig. 1, which shows the global
trajectory of the instruction, the local visual scene and the
top view. The agent must finish the navigation in a house
according to the step by step instruction.

Most traditional methods build on a Seq2Seq architec-
ture, which encodes and decodes all the information through
LSTM. In this way, each instruction is understood in iso-
lation. The model learns from scratch without a priori
in-domain knowledge. Additionally, the instructions cor-
responding to each trajectory in the VLN task describe
that trajectory from a partial perspective, so using priori
in-domain knowledge is necessary.

Therefore, we adopt the PREVALENT [2] model, which
is a transformer-based pre-training model, as the base
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model. It improves the success rate (SR) and the success
rate weighted by path length (SPL) in both seen and unseen
environments compared to traditional models. Instead of
using a trajectory (a string of points) as a training sample,
the trajectory is split into several points; each point is a
training sample in the form of a “text-image-action” triad,
i.e., each training sample is the corresponding instruction,
visual state, and action for that point. This model enables
the use of a priori knowledge and does not allow each
instruction to be understood independently.

However, it is too expensive to train and run because
of the tremendous number of model parameters. The
PREVALENT model has over 130 million parameters. Such
a large model needs many powerful GPUs to calculate and
costs too much energy. Obviously, it is not appropriate for
sustainable computing and practical application in real life.

Therefore, inspired by Hinton [3], we propose knowledge
distillation [4] to reduce the model parameters and shorten
the inference time while maintaining the most performance.
Knowledge distillation aims to transfer the knowledge
embedded in a large teacher model to a small student
model. In this paper, PREVALENT is the large teacher
model. The small student model is trained to follow the
behaviours of the teacher model. To transfer the knowledge,
four loss functions are designed to fit the teacher model’s
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Fig.1 VLN task demonstration.
The left side is the instruction.
Above and below are the local
visual scene and global view

through the
bedroom and out
of the door into
the hallway. Walk
down the hall
along the banister
rail through the
open door.
Continue into the
bedroom with a
round mirror on
the wall.

Instruction: Walk

representation according to the the transformer core struc-
ture: 1) the embedding output, 2) the attention mechanism
hidden state, 3) the feedforward layer hidden state, 4) the
logits output of the last prediction layer. After the exper-
iments, the results show that the student model transfers
approximately 95% of the knowledge from the teacher
model.The model size is reduced by 87%, and the average
inference time is reduced by approximately 86%.It main-
tains a good cross-modality semantic representation ability
and runs much faster.

2 Background

VLN tasks involve multimodal data, and one of its great-
est challenges is to require the agent to take “appropriate”
actions in an environment that has never been seen before.
An agent determines a trajectory T = (sq,52...S,) that
consists of m viewpoints based on visual observation V, fol-
lowing the natural language instruction X = (x1, X2 ...Xp),
which consists of n words. At each step t, the agent obtains
visual observation v; € V and navigable viewpoint set
{lt k} . The visual observation is a panorama {ot i }1361

catenated by 36 RGB images. Each image o; ; represents a

con-
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Local visual scene

different orientation (6; ;, ¢; ;),where 6; ; € [—m, +m]isthe
heading pose, and ¢;; € [—%.+%] is the elevation pose.

The navigable viewpoint set {lt k }N’ indicates that at step
t there are N, viewpoints that the agent can go next. l; k con-
tains the relative orientation (9, iy ¢, ;) between the current
point and the next navigable point. The agent needs to take
an action a, according to instruction X,observation V and
historical actions {a;}._}

3 Related work
3.1 Vision-language-navigation

At present, there are generally three VLN tasks, R2R,
CVDN [5] and HANNA [6]. The R2R task is the cur-
rent mainstream research task with clear natural language
instructions. The CVDN task allows robots to navigate
autonomously in conversation. However, no specific inter-
mediate process is specified in the HANNA task.

The current methods for VLN tasks are as follows.
In Speaker-Follower [7], a panoramic image was used as
the image state for the first time, and the dataset was
augmented by backtranslation [8] technology. EnvDrop
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[9] further uses dropouts in the environment to reach
SOTA. RCM [10] processes attention in many ways,
predicts the next action through LSTM, and uses imitation
learning and reinforcement learning to improve accuracy.
In R2R environments, the agent’s ability to perceive real-
world images and understand natural languages becomes
even more crucial. PTA [11] designed a transformer-like
architecture that combines action history and perception
patterns and achieved good results in low-level VLN
on R2R. MEPPR [12] uses BERT to evaluate tweet
preprocessing to avoid noise and use hidden information.
The most relevant work is PRESS [13], which uses a
partial pre-training approach to encode the text directly
using BERT. However, in this paper, we completely use
a pre-training approach to pre-train the model for image
and language information. In addition, most of the policy
approaches tend to expose biases, and random actions can
cause the intelligence to deviate from the correct path and
invalidate the original instructions. To improve the success
rate, both beam search and pre-exploration are widely used.

3.2 Vision language pre-training based on BERT

After the transformer-based pre-training model achieved
great success in natural language processing, it was also
been increasingly used in the cross-modality field. A batch of
improved visual-language representation models based on
BERT was proposed. The pre-training methods can improve
not only performance but also generality. They can be applied
to multiple different tasks with only fine-tuning,such as
image captioning [14], visual question answering (VQA)
and visual reasoning. For example, LXMERT [15] and Vil-
BERT [16] use single-stream and dual-stream methods to
combine cross-modal attention to directly achieve the best
performance on these tasks. VideoBERT [17] and VLBERT
[18] fully demonstrate the powerful representation capa-
bilities of the pre-trained model. In this paper, we use an
approach similar to LXMERT method in Section 4, which
is designed to significantly reduce memory usage, allow-
ing the entire model to be trained on a single GPU without
performance degradation.

3.3 Model compression

There are several model compression methods for reducing
model size, training time and inference time, such as quan-
tization [19], weight pruning [20], filter pruning [21] and
knowledge distillation. ALBERT [22] reduced the model
size by embedding factorization and parameter sharing.
Since ALBERT does not reduce the hidden size or trans-
former block level, it still requires many computations.
LFPC [23] learns and optimizes the validation loss of the
pruning network obtained from the sampled criteria and

can adaptively select the appropriate pruning criteria for
different functional layers. Reformer [24] introduced the
local sensitive hashing and RevNet’s structure to reduce
the attention complexity. The performance is comparable
to that of the transformer model while being more mem-
ory efficient and faster on long sequences. mBERT [25]
demonstrated the effectiveness of cross-linguistic transfer
learning by using four different training strategies. ResNeXt
[26] migrates the higher-level network knowledge to the
lower-level network through self-distillation, which is more
efficient for training than traditional knowledge distillation.
AMTML-KD [27] can enable a student model to learn mul-
tiple knowledge levels from multiple teachers. DistillBert
[28] refines knowledge through soft and hard logarithmic
label loss with better language comprehension and gen-
eralization performance. We systematically investigate the
mechanisms behind the above knowledge extraction and
analyse how these effects help the training of student mod-
els. Our model differs from the above in two main ways. 1)
The difference in application areas, for example, Zhang et
al. used the ResNeXt model, and the task was image classi-
fication, while we applied the model to the VLN task. 2) The
present model is more similar to DistillBert and TinyBERT
[29] in that the knowledge is extracted from the model in the
pre-training and fine-tuning phases through the transformer
distillation method. However, we optimize the distillation
performance by reducing the number of training steps.

4 Model

As Fig. 2 shows, The upper part is the teacher model
that contains 3 single modality layers and 9 cross-modality
layers. The lower part is the student model that contains
1 single modality layer and 3 cross-modality layers. By
knowledge distillation, the large teacher model is com-
pressed to the small student model with fewer layers.
Figure 3 shows the detailed teacher model structure, which
consists of the embedding, single modality encoder, and
cross-modality encoder. The student model structure is the
same as the teacher structure, but its number of encoder
layers and its hidden state size are smaller.

4.1 Embedding

Embedding aims to turn the image and text input into a
feature sequence. It consists of visual embedding and textual
embedding.

4.1.1 Visual embedding

Different from PREVALENT, which directly uses CNN to
extract features from the entire panoramic image, we extract
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Fig.2 Overview diagram of model distillation

object-level highlight features, which is called the region of
interest feature (ROI). The Faster-RCNN is used to extract
the objects in the image. The 2048-dimensional pooling
feature before the final classification layer is used as the ROI
feature. Each ROI feature’s position embedding is the four-
dimensional coordinates of its bounding box, namely,(X,
y, h, w), X,y as the centre point coordinates, and h,w as
height and width. Then, after passing through two fully
connected layers (FCs), they are added to obtain the final
image embedding. The specific formulas are as follows:

fj = LayerNorm (Wy f; + by) 6))
pj = LayerNorm (W,p; + b)) (2)
FyisualEmb = (fj + ﬁj) /2 3

where Wy, Wyand by, b, are the weights and bias of a set of
linear layers, respectively, and LayerNorm(LLN) means layer
normalization. FyigyalEms 1S the final visual embedding.

4.1.2 Textual embedding

The textual embedding is similar to BERT. First, the input sen-
tence is tokenized through WordPiece. Special tokens([CLS],
[SEP]) are added at the beginning and end of the input
embedding. Then, the one-hot word vector and its position
are embedded separately. The final textual embedding is the
sum of word embedding and position embedding. The word
embedding represents the mapping from the vocabulary to
the hidden state. The specific formulas are as follows:

%i = WordEmb (x;) 4

Y &
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u; = IdxEmb (u;) 5)

FiextEmb = LayerNorm ()21 + i ) (6)
4.2 Single modality encoder

Single modality encoders process visual information and
textual information separately. The single modality encoder
is a multilayer normal transformer encoder. As shown in
Fig. 3, the transformer encoder consists of self-attention and
a feedforward layer.

Self-attention aims to retrieve information from a set
of key-value pairs related to a query vector and only
needs to address its own information to update the training
parameters without adding additional information. We
compute the dot products of the query with all keys, divide
each by +/dy, and apply a softmax function to obtain the
weights on the values. The formula is as follows:

oK'
N ) v @)
The feedforward layer is a fully connected linear layer with
ReLU activation. Moreover, the residual structure is applied
to both the self-attention and feedforward layers.

Attention (Q, K, V) = softmax <

4.3 Cross-modality encoder

As shown in Fig. 3, the cross-modality encoder is a modified
multilayer transformer encoder. To fuse visual and textual
information, cross-modality attention is added in front of
the normal transformer encoder. In the process of cross
attention, the queries that come from the outputs of single
modality encoders from different modalities are exchanged
with each other. The scaled dot products of visual queries
with textual keys are computed to obtain textual features
that contain visual information. In the same way, the
scaled dot products of textual queries with visual keys
are computed to obtain visual features that include textual
information. The formulas are as follows:

OLK]
CrossAtty; v (Qr, Ky, Vy)=softmax N Vv (8)
k

T

CrossAtt (Qv, K, Vi) =softmax OvKL Vi 9)
V—>L Vs L L)= L
N dk

where the subscripts V and L indicate vision and language,
respectively.

4.4 Student model

As shown in Fig. 2, the student model structure is the same
as the teacher model. However, it is much smaller than the
teacher model. The student’s layer number of the cross-
modality encoder is 3, while that of the teachers is 9. The

hidden state size(as well as embedding size) of the student
model is 312 dimensions, while that of the teachers is 768.
The student model size is only one-fifth of the teacher
model. The detailed model size comparison is shown in
Table 1. The detailed student model distillation process is
presented in Section 4.

5 Knowledge distillation

Knowledge distillation (KD) aims to transfer knowledge
from a well-learned large teacher model. After all the
training and KD, only the small student model needs to be
used, which is faster and as good as the large model. In this
section, four KD parts are designed for the student model to
fit the teacher model’s behaviours.

5.1 Embedding layer distillation

According to the structure of the teacher model, and
because of the student model’s smaller embedding size,
the following mean square error loss function(MSE) forces
the student model to obtain embedding representation
transference. The loss is as follows:

M
1
lemb = - 21: (ESW, — E')? (10)
=

where ES € R/*? and E" € R'* are the embedding matrix
sizes of the student and teacher models, respectively./ is the
input sequence length.d is the teacher model size 768. d’ is
the student model size 312. Because of the different model
sizes,W, € R4 *d g the learnable scaling matrix.

5.2 Attention layer distillation

Inspired by Ganeshz [30] and Guarasci [31], which found
that the attention weights learned by BERT capture rich
linguistic knowledge and that knowledge can be embedded
in the structural layer of the BERT model, we propose
attention distillation to force the fused cross-modality
semantic knowledge to be transferred from the teacher
model to the student model. Specifically, the student learns
to fit the matrix of multihead attention in the teacher
network, and the loss(MSE) is defined as:

11 g N t 2
lan = 757 20 2 (45 = 45) (1

where £ is the attention head number and Af e R is the
i-th head attention matrix of the student.

@ Springer



5612

B. Huang et al.

5.3 Feedforward layer distillation

The feedforward layer is another part of the transformer
beyond the attention mechanism. The feedforward layer size
of the student model is also smaller than that of the teacher.
Therefore, we distil the output (the hidden state) of this
layer for full knowledge transference. The loss(MSE) is
defined as:

M
lyf = %Z(sth ~H')’

i=1

12)

where H® € R4 H' ¢ R'*4 and W), € R %4 are similar
to the embedding distillation.

5.4 Prediction layer distillation

To fit the output distribution of the teacher model, prediction
layer distillation is designed as in Hinton’s approach.
Specifically, the soft cross-entropy loss is used:

13)

)
Ipre = — Softmax (z') - log (Softmax (%))

where 7' and z* are the logits (final prediction output) of
the teacher and student models, respectively, and T is the
temperature value of log-likelihood loss. Here T is 1 in our
setting.

Compared with TinyBERT, the distillation method in this
section has a certain optimization. We merge the redundant
steps into one step. By simply optimizing all losses at
once, as described in the equation. This simplification not
only reduces training time but also optimizes performance.
Finally, the loss of the whole knowledge distillation is the
sum of the weights above four parts distillation losses. The
weights of each part are hyperparameters.

L =lemp+lan + lff + lpre (14)

public website’s Room-to-Room dataset, which we trained
ourselves from scratch.

6.1 Pre-training

The pre-training stage contains two tasks: image-attended
masked language modelling (MLM) and action prediction
(AP).

6.1.1 Masked language modelling

For text input, 15% of words are randomly replaced. For
these 15% replaced words, 80% of the words were replaced
with the special token [MASK], 10% of the words were
replaced with other random words, and the remaining 10%
of the words remained unchanged. The goal is to predict
these masked words x; based on the remaining words
X; and visual information v by minimizing the negative
log-likelihood:

Iy = —Elog (p (x; | X;, v)) s)

The reasons for this masking strategy are as follows:
replacing the original word with [MASK] can integrate
true bidirectional semantics without revealing the label,
replacing words randomly can force the model to learn the
global semantics; keeping 10% of the words unchanged can
give the model a certain degree of bias.

6.1.2 Action prediction

This task aims to predict the action a’. The special
token([CLS]) is further processed. This token is the fused
representation of two modalities’ information. The output
feature of this token is passed through an activated linear
layer and normalized layer. Then, it is passed through
another fully connected layer to obtain the turning angle
value. This turning angle represents the specific angle that
should be turned to reach the next navigable point according
to visual observation and language instruction. This task
uses the mean square error loss function, as follows:

6 Training 1 )
lap =E~3 (a—p(a | xcus),v)) (16)

First, we train the teacher model following Sections 6.1 i=l1
and 6.2. Theg, tbe studept model. 15 tralned. through Finally, the full pre-training loss function is:
knowledge distillation (Section 5) to imitate the fine-tuned
large teacher model. The pre-training process uses the  Loss =Ilyry +Ilap an
Table 1 The model size
comparison between the Model Layers Hidden State Size Feedforward Size Model Size
teacher and student model

Teacher 12 768 3,072 130 M

Student 4 312 1,200 173 M (87%)

@ Springer
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6.2 Fine-tuning

After pre-training, the model should be fine-tuned further.
The models based on the pre-training method can be
applied to different downstream tasks via fine-tuning.
PREVALENT has proven that the model can be used for 3
different tasks: VLN, CVDN, and HANNA. This paper only
studies the most representative VLN task. To use the pre-
trained model for fine-tuning in the VLN task, the output
features that are attended and contextualized are fed into the
EnvDrop model.

7 Experimental results & analysis
7.1 Dataset

The Room-to-Room(R2R) dataset for the VLN task is
based on photorealistic home environments. There are
90 different scenes that contain 7,189 trajectories, and
each trajectory contains approximately 5 viewpoints. Each
trajectory corresponds to 3 different natural language
instructions. The dataset is split into a training set, a seen
validation set, an unseen validation set and a test set. Among
them, the original dataset is in the form of three instructions
for each path (several viewpoints). In this article, the dataset
is separated into the form of each viewpoint corresponding
to one instruction and the turning angle from the current
point to the next point is calculated as an action. Finally, it
forms a viewpoint-instruction-action triplet to apply to our
model, for a total of 104,000 triplets.

7.2 Evaluation

The evaluation indicators used in this article are success
rate(SR), navigation error(NE) and success weighted by
path length (SPL).

SR: The percentage of the agent’s final location that is
less than 3 metres away from the target location.
NE: The mean distant error between the ground-truth
viewpoint and the point to which the agent moves.
The lower the result is, the better.
SPL: A higher score represents more navigation effi-
ciency.

Among these indicators, SPL is the recommended main
indicator, and other indicators are considered auxiliary
indicators.

7.3 Setting

The batch size is 96. The optimizer is AdamW. The learning
rate is 5 x 107> The word vocabulary is WordPiece(30255).

We use g(m) = 3 x m as the layer mapping function, so
that the student model learns every 3 layers for the teacher
model. For the teacher model, a 3-layer single modality
encoder for text and image, and a 9-layer cross-modality
encoder are used. For the student model, a 1-layer single
modality encoder for text and image, and a 3-layer cross-
modality encoder are used. The hyperparameter temperature
T is fixed to 1, & = 0.2, and the learning weight A is set to 1
for each layer, which works well for model learning.

7.4 Baseline models

We compare our approach with six recently published
models.

a) Random:An agent that randomly chooses a direction
and moves five steps in that direction.

b) Seq2Seq: The model based on the sequence-to-
sequence model using a limited discrete action space.

¢) RCM: The model combines model-free and model-
based reinforcement learning.

d) EnvDrop: An agent is trained with environment-
dropout, which can generate more environments base-
don the limited seen environments.

e) Speaker-Follower: The model is trained with data
augmentation from a speaker model on the panoramic
action space.

f) PRESS: The model directly uses BERT for word
embedding and random sampling of agents to train
them to generalize well in unseen environments.

7.5 Results comparison with baselines

The results of our model in every part of the dataset have
overall improvement compared to other baseline models due
to adopting the transformer-based pre-training model. As
shown in Table 2 and Fig. 4, the SPL is increased by 3.1 and
2.4, respectively, on Val Unseen and Test compared to the
best baseline model. The SR also increases by 2% in the test
set, which is an unseen environment. This means that our
pre-training method has a better generalization ability. The
higher SPL of our model shows that it can better understand
the instructions and visual information.

7.6 Efficiency comparison

This part compares the efficiency of the teacher model
(PREVALENT) and the student model (ours). The knowl-
edge distillation improvement makes the model much
more efficient. As shown in Table 3, Figs. 5 and 6, the
model parameters of the student model(ours) are reduced
by approximately 87% compared with the teacher model,
which is also the PREVALENT model. Additionally, the
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Table 2 The performance comparison with baselines

Model Val Seen Val Unseen Test

NE(m) SR(%) SPL NE(m) SR(%) SPL NE(m) SR(%) SPL
Random 9.45 16 - 9.23 16 - 9.77 13 12
Seq2Seq 6.01 39 - 7.81 22 - 7.85 20 18
RCM 3.53 67 - 6.09 43 - 6.12 43 38
EnvDrop 3.99 62 59 5.22 52 48 5.23 50 47
Speaker-Follower 3.36 66 - 6.62 35 - 6.62 35 28
PRESS 4.39 58 55 5.28 49 45 5.49 49 45
Ours 3.86 69 64 4.98 44.7 51.1 5.53 52 49.4

inference time is greatly reduced by 86%, so our model is
more suitable for practical applications and meets the need
for sustainable computing. Although the model is increas-
ingly smaller and faster, most knowledge of the teacher
model is maintained. Only approximately 5% of the average

performance is lost.

7.7 Effect of knowledge distillation

In this part, the effects and impact of each layer distilla-
tion are experimented.The student models were tested for

80
70
60
50
40

30

10

. || T | I

NE (m) SR(%)
Val Seen

® Random

SPL(%

H Seq2Seq

Fig.4 The performance comparison with baselines
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Table 4 and Fig. 7 show that all 4 parts of distillation
are useful. Compared to the complete distillation (Ours)
model, all metrics showed varying degrees of degradation.
The attention layer distillation performance drops the most
significantly and lost the most knowledge, which means
that it is the key to student learning. This is followed
by feedforward layer distillation, while attention layer
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Table 3 The efficiency comparison

Model Val Seen Val Unseen Test Model Size Inference time(s)
NE SR SPL NE SPL NE SR SPL
Teacher (PREVALENT) 3.67 69 65 4.71 53 5.30 54 51 130 M 7.9
Student (Ours) 3.86 69 64 4.98 44.7 51.1 5.53 52 49.4 17.3 M (87%,) 1.1 (86.01%)
Fig.5 Performance comparison
between the teacher model and - SPL
student model 3 SR .
=
NE
o SPL =
— O
S 2 SR
= NE
§ SPL S
A SR@)
<
> NE(m)
10 20 30 40 50 60 70 80
Student m Teacher
Fig.6 Efficiency comparison
between the teacher model and
student model Student |

Teacher [l

20 40 60 80 100 120 140
m Inference time(s) ® Model size

Table 4 The effect of each part of knowledge distillation
Model Val Seen Val Unseen Test

NE SR SPL NE SR SPL NE SR SPL
Ours 3.86 69 64 4.98 44.7 51.1 553 52 494
No Embedding 3.92 69 63 5.06 439 50.4 5.62 51.1 48.6
No Attention 4.53 62 55 5.98 36 40 6.11 40.1 38
No FF 3.99 65 59 5.14 40.1 45.2 5.72 45.3 41.3
No Prediction 3.95 67 62 5.01 43.63 52.8 5.66 50.8 48.2
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Fig.7 The effect of each part of 80
knowledge distillation
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distillation and feedforward layer knowledge distillation
are complementary to each other. The effect of embedding
layer distillation is the smallest. To further examine the per-
formance of the proposed knowledge distillation method.
Compared with TinyBERT, its performance is better than
TinyBERT under the same configuration. It can save about
21%-31% of training time. This is very important in the
training of large datasets, this improvement not only reduces
the training time, but also further improves the performance,
which allows the student model to learn the prediction
and intermediate layers more efficiently. In addition, Com-
pared with other compression models, such as quantization,
pruning and other methods, because the number of model
parameters is different. So this is an unfair comparison and
we will investigate this part further in future work. We will
show the processing of the model in Appendix.

8 Conclusion

In this paper, a more efficient pre-training model for the
VLN task is introduced. In contrast to the traditional
LSTM-based autonomous navigation models, this paper
uses a structure similar to the BERT language pre-training
model. For the autonomous navigation task, object-level
Rol features are embedded in the visual embedding phase,
whereas in general autonomous navigation models only use
Resnet-152 for overall-level visual embedding. The model
stacks multiple layers using the transformer for cross-modal
attention as an encoder for the fusion and characterisation of
cross-modal features. The training method used is simpler

@ Springer

and more suitable for autonomous navigation tasks. After
complete training, the knowledge from the original large
model is transferred to the small model in four ways using
knowledge distillation. Experiments have proven to be more
efficient and run faster while maintaining almost most of
the performance.Our future work will focus on three areas:
1) how to improve the model’s ability to generalise in the
face of unknown environments, such as street navigation
and navigation in continuous environments. 2) Currently
our model is only used for VLN, we believe it has great
potential for solving other tasks that require sequential
interaction/decision making, such as verbal and visual
dialogue, conversational navigation, etc. 3) We will further
delve into how to effectively enable the model to learn
from a broader and deeper teacher model, improve SR, and
consider ways to improve the stability of the KD algorithm
through methods such as self-supervised.

Appendix A: Visualization

This part shows the process of our model step by step,
especially the attention mechanism. The blue dotted box
in the panorama denotes the visual information that needs
to be given the most attention according to the textual
information and historical trajectory. In addition, the red
arrow is the specific orientation (the next point). The
blurry part in the image needs to be ignored according
to the attention mechanism. The coloured words (such as
coloured words ) in the instruction represent the degree of
attention. The darker the colour, the more attention required.
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Stepl:

-180 90

Instruction: Move forward to the @O0IWAY until you see the art

90
on the wall. Once there, change your direction and move

180

onward towards the left. Continue your forward progress through the bedroom. Past the footstool on your left. Continue
moving forward out on the balcony and come to a complete stop behind the couch.

Step2:

-180 90
Instruction: Move forward to the doorway until

0
you see the . on the

wall. Once there, change your direction and move

onward towards the left. Continue your forward progress through the bedroom. Past the footstool on your left. Continue
moving forward out on the balcony and come to a complete stop behind the couch.

Step3:

180 90

Instruction: Move forward to the doorway until you see the art on the wall. Onc

onward towards the [8f. Continue your forward progress

. Past the footstool on your left. Continue

moving forward out on the balcony and come to a complete stop behind the couch.

Step4:

-180 90

Instruction: Move forward to the doorway until you see the art on the wall. Once there, chanie iour direction and move

onward towards the left. Continue your forward progress through the bedroom.
and come to a complete

moving forward out on the
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