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Abstract. Table structure recognition is a challenging task due to com-
plex background and various styles of tables. Existing methods address
this challenge by exploring adjacency relationship prediction, image-to-
text generation, logical position prediction, etc. However, these meth-
ods either adopt Graph Convolutional Network (GCN) structures, which
mainly focus on the local context information, or Multi-Head Attention
(MHA) structures, which mainly focus on the global context information.
Both of them ignore the correlation between local and global features. In
this paper, we propose a Local-Relationship-Aware Transformer Network
(LRATNet) for table structure recognition. LRATNet constructs a robust
correlation between local and global information using the LRAT mod-
ule. The LRAT model has been adapted into three distinct variants: Row-
LRAT, Col-LRAT, and Spa-LRAT. These variants are designed to empha-
size specific aspects of information: row information, column information,
and spatial information, respectively. This is achieved through the explo-
ration of different adjacency relationships. This improves the performance
of logical location prediction. Additionally, we have developed a new loss
function called Lstage, which is designed to improve accuracy in predict-
ing logical positions. Experimental results demonstrate that our method
outperforms existing approaches on three public datasets.

Keywords: Table structure recognition · GCN · Transformer ·
Adjacency encoding

1 Introduction

Table structure recognition (TSR) is an important task in the field of computer
vision, aiming to automatically understanding and processing the structure and
content of tables in images or documents. This facilitates various applications,
including information extraction, document automation, database population,
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question answering and dialogue systems. Although many relevant works have
been proposed and they have achieved impressive progress in addressing the TSR
problem. It remains a challenging task due to its complex table styles, such as
merged cells, spanning rows and columns, dense cell layouts, various table lay-
outs, table images distortion and etc. Some methods [1,2,11–13,16,17] involve
predicting relationships between table cells, specifically determining whether
adjacent cells are in the same row or column. However, these approaches do
not provide direct solutions for determining the logical positions of individual
cells within tables. As a result, they often necessitate the use of complex post-
processing or graph optimization algorithms to obtain the desired structural
information. Some methods, as discussed in [3,7,10,25] involve modeling the
TSR problem as a sequence prediction task. In this task, the table structure is
predicted using corresponding LaTeX or HTML tags, which are then evaluated
using Tree-Edit-Distance-based Similarity (TEDS) [25]. Other methods [20–22]
adopt a more direct approach by predicting the logical positions of individual
table cells. They aim to predict the starting row, starting column, ending row,
and ending column of each cell, allowing for table reconstruction without the
need for intricate post-processing, as depicted in Fig. 1. This approach offers a
more intuitive way for machines to understand table structure. For instance,
TGRNet [22] utilizes Graph Convolutional Networks (GCN) [9] and ordered
node classification to predict the logical positions of rows and columns separately.
GCNs are primarily designed for aggregating local context information. Although
TGRNet incorporates global edge distance information as graph weights, the per-
formance of GCNs in aggregating global context information remains limited.
In contrast, LORE [20] employs Multi-Head Attention (MHA) blocks [19] to
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Fig. 1. Overview of logical location prediction paradigm. Here, sr, er, sc, ec refer to
the starting row, ending row, starting column and ending column respectively.

directly aggregate context information for regression-based predictions. Atten-
tion is renowned for its ability to capture global context information and have
achieved impressive results in LORE. However, it is worth noting that LORE
places relatively less emphasis on the role of local context information.

In response to the existing problems for logical position prediction, we pro-
pose a novel approach called LRATNet, which is based on GCN and MHA archi-
tectures. LRATNet aims to solve the TSR challenge by aggregating both local
and global context information. In the traditional MHA structure, the query (q),
key (k), and value (v) are derived from a single feature and individually processed
through three linear layers before entering MHA for information aggregation.
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However, MHA excels at extracting global context information but falls short
in addressing local context information. To address this problem, we propose
a novel module named LRAT, which sends the key (k) and value (v) through
a GCN for local context information aggregation. As a result, when the query
(q) interact with the key (k) during searches, they now consider not only the
global context information but also pay attention to the local context informa-
tion. Inspired by [23], we have also introduced a novel strategy for the adjacency
encoding and incorporated a convolutional layer within the LRAT structure to
further emphasize the significance of local context information. According to the
different ways of aggregating information, we also proposed three other mod-
ules, Row-LRAT, Col-LRAT, Spa-LRAT. They are employed to aggregate the
context information of rows, columns and spaces respectively. Furthermore, an
LRAT module is employed to aggregate these three types of context information.
The above four modules together constitute a LRAT blcok. In addition, we have
also designed a new loss function called the Lstage loss, which is primarily used
to emphasize the accuracy of predicting all the correct logical indices for each
cell, rather than solely focusing on the accuracy of a single logical index.

We summarize our contributions as follows:

– We proposed a TSR model for predicting the logical position of the table,
named LRATNet. Multiple modules, such as Row-LRAT, Col-LRAT, Spa-
LRAT, and LRAT, are employed to aggregate context information from var-
ious aspects.

– We proposed a LRAT module based on GCN and Transformer to pay atten-
tion to both global and local context information.

– We designed a loss function named Lstage to focus on predicting the accuracy
of four logical indices for each cell, rather than solely focusing on the single
logic index.

2 Related Work

Early works to TSR heavily relied on predefined rules and hand-crafted fea-
tures [5,8,18]. However, rule-based methods often struggle to provide robust
results for diverse table structures. In recent years, deep learning-based
approaches have emerged to tackle TSR, demonstrating promising outcomes.
These methods can be categorized into three main groups: adjacency relation
prediction methods, image-to-text generation methods, and logical location pre-
diction methods.

2.1 Adjacency Relation Prediction

The prediction of adjacency relationships aims to determine the positional rela-
tionship between two candidate cells in a table, specifically whether two cells are
in the same row, the same column, or if they represent the same cell. Methods [1,2,
11,16,21] classify relationships between cells by treating cells as nodes and the con-
nections between them as edges, and then a graph structure can be constructed.
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FLAG-NET [13], NCGM [12], and TabStruct-Net [17] employ DGCNN [15] to
model the positional relationships between adjacent cells. These methods utilize
precise network structures or multimodal information to enhance relationship pre-
diction, achieving impressive results. However, they primarily focus on predicting
relationships between local cells. To capture the overall structural information of
the entire table, complex post-processing or graph optimization algorithms are
often required. Additionally, in specific scenarios, predicting only adjacent rela-
tionships may not suffice to infer the complete structure of the entire table.

2.2 Image-to-Text Generation

Image-to-text generation methods treat table structure prediction as a sequence
prediction task. In this framework, the sequence represents the structural infor-
mation of the table, often encoded in formats such as HTML or LaTeX. Sequence
decoders are employed to generate textual label tags that describe the table’s
structure. Recent research within this paradigm predominantly adopts an end-
to-end methods. Deng et al. [3] utilize an attention mechanism with an LSTM
[6] structure to generate LaTeX labels that define the table’s structure. EDD
[25] and TableBank [10] employ an encoder-decoder architecture to produce
corresponding sequence labels in an end-to-end manner. In addition, VAST [7]
has introduced a visual-alignment loss, which maximizes the utilization of local
information from table cells. However, it’s important to note that these meth-
ods often encounter challenges related to learning noisy markup sequences. This
can lead to difficulties in achieving training convergence and result in highly
time-consuming sequential decoding processes.

2.3 Logical Location Prediction

Logical location prediction involves determining the starting and ending rows
and columns of each cell in a table, providing vital structural information. TGR-
Net [22] was the pioneer in this field to our knowledge, utilizing a GCN [9] struc-
ture to integrate visual and positional cell data and employing ordered node
classification for separate row and column predictions. While effective for sim-
pler tables, its performance falls short for more complex structures. Conversely,
LORE [20] employs cascaded MHA [19] blocks for direct cell position regres-
sion. However, its exclusive reliance on the MHA structure for global context
aggregation overlooks the importance of local context information.

3 Methodology

3.1 Overall Architecture

The overall architecture of our proposed LRATNet model is illustrated in Fig. 2.
It primarily consists three main components: a CNN-based visual feature extrac-
tor, three LRAT blocks, and a Regression module. Firstly, we use a feature
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Fig. 2. The architecture of our proposed LRATNet.

extractor to acquire the visual appearance features FA and geometric features
FG of the table cells. Then, these two sets of features are fused and fed into multi-
ple stacked LRAT blocks. Finally, the aggregated context information is fed into
the Regression Module, which predicts the logical positions of each table cell,
including the starting row, ending row, starting column, and ending column.

3.2 Feature Extraction

Inspired by [14,26], for a given input table image, we employ a key point segmen-
tation network to extract features from the table image. Based on the ground
truth for each cell, we model the visual features of each cell as the sum of
its four corner points, denoted as F cr, and the center point, denoted as F ct.
F cr =

{
f1
cr, f

2
cr, ..., f

N
cr

} ⊂ RN×d, where N and d represent the number of each
table cells and the embedding dimension, respectively. F ct =

{
f1
ct, f

2
ct, ..., f

N
ct

} ⊂
RN×d. Here, f i

cr corresponds to the features on the feature map of the bounding
box corners, f i

ct corresponds to the features on the feature map of the center
point, and i denotes the i-th cell. Therefore, the visual embedding for the table
image is denoted as:

FA = Fct + Fcr. (1)

The geometric embedding, denoted as FG =
{
f1
b , f2

b , ..., fN
b

}
, is formed by con-

catenating the corner points and the center point of each cell. These embeddings
are obtained using a Fully-Connected layer for embedding. Subsequently, we
obtain the final feature representation F = FA +FG =

{
f1, f2, ...fN

} ⊂ RN×d.
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3.3 LRAT Module

In this section, we will provide a detailed overview of the LRAT module. As
shown in Fig. 3. The LRAT module mainly consists of convolutional layers, linear
layers, a GCN layer, and multi-head graph attention components. For the input
F , and Q, K and V are first calculated when the feature F is fed to the LRAT
module. Next, we use FQ, FK and FV to respectively represent the features
calculated for Q, K and V . For FQ, FQ = F . Regarding K and V , to improve
aggregation of local context information, and to facilitate enhanced focus on
both local and global context information when querying K with Q later on, we
employ GCN [9] to aggregate local context information. Which are denoted as:

FV = FK = GCN(F,A). (2)

Secondly, we utilize Multi-Head Graph Attention (MGHA) to aggregate
global context information. Following the MGHA operation, we obtain F̃ =
MGHA(FQ, FK , FV ). Similar to the approach presented in [19], we apply resid-
ual connections and layer normalization to the LRAT module. After obtaining P ,
we introduce an additional CNN layer to further aggregate adjacent information
at the end.

F̂ = Add&Norm(F̃ , FQ), (3)

P = Add&Norm(FFN(F̂ ), F̂ ), (4)

Y = CNN(P ). (5)

For the MGHA operation, drawing inspiration from prior work [23], we start
by passing Q and K through a MatMul layer followed by a Scale layer. Addi-
tionally, we introduce a 1× 1 convolution operation on the adjacency matrix to
encode it into the same dimension as K and V . Subsequently, we sum these com-
ponents together and apply a SoftMax function. This process further enhances
the emphasis on local context information. Finally, F̃ can be obtained through
a MatMul layer.
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3.4 LRAT Block

In Sect. 3.3, we provided a detailed overview of the LRAT module. In this section,
we introduce our proposed LRAT block. The LRAT block consists of four mod-
ules: Row-LRAT, Col-LRAT, Spa-LRAT, and LRAT. The structures of these
four modules are the same as the LRAT module introduced in Sect. 3.3. How-
ever, we distinguish them here primarily based on how they aggregate context
information. For Row-LRAT and Col-LRAT, their primary focus is on aggregat-
ing context information along rows and columns, respectively. To achieve this,
when constructing the adjacency matrix for GCN input, we use Row-LRAT to
exclusively capture row adjacency relationships in an adjacency matrix, while
employing Col-LRAT to exclusively address column adjacency relationships in
an adjacency matrix. This approach follows a similar methodology as described
in [1]. In our modeling, each cell is considered a node, and we represent its edges
as eij (where i is not equal to j, and 1 <= i, j <= N). Consequently, when
constructing edges, we calculate edges between each node and all other nodes,
utilizing the Euclidean distance as the corresponding weight for each edge. The
specific weight calculation is as follows:

Arow
i,j = exp{−(

byi − byj
H

× β)2}, (6)

Acol
i,j = exp{−(

bxi − bxj
W

× β)2}, (7)

Here, Arow
i,j represents the row relationship, Acol

i,j represents the column relation-
ship, bxi and byi correspond to the x and y coordinates of each cell’s center point,
and H and W denote the width and height of the image, respectively. β is a
hyperparameter. In this process, we focus solely on one-dimensional location
relationships within rows or columns, rather than spatial relationships. In con-
trast to the previous two modules, Spa-LRAT primarily aggregates information
based on adjacency relationships along the row and column dimensions, which
mainly focuses on spatial location relationships. The structure of Spa-LRAT is
identical to that of LRAT, and the final information aggregation is performed by
LRAT. The overall feature representation is defined as F c = F c

row +F c
col +F c

spa.
Here, F c

row, F c
col, and F c

spa represent the features after aggregation by Row-
LRAT, Col-LRAT, and Spa-LRAT at a specific layer denoted by c.

3.5 Regression Module

After aggregating local and global context information through three LRAT
blocks, we obtain the final context information. Subsequently, we employ a
Multi-Layer Perceptron (MLP) for the regression task, predicting the start-
ing row, ending row, starting column, and ending column for each cell. This
process produces the ultimate results, denoted as L =

{
l1, l2, ..., lN

}
, where

li =
{
rowstart

i , rowend
i , colstarti , colendi

}
.
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3.6 Loss Function

Our loss function is computed as Lall = aLlog + bLstage, where a and b are
hyperparameters. It comprises two main components: Llog and Lstage. Llog quan-
tifies the difference between the predictions directly generated by the regression
module and the corresponding ground truth values. Regarding Lstage, we only
consider the logical position of a cell as correct when all four logical indices are
accurately predicted. Even if three out of four indices are correct, it is still con-
sidered an incorrect prediction. To address this, we have devised a multi-stage
loss function called Lstage. Specifically, lic is calculated as the number of correctly
predicted logical indices based on li for each cell. l̃i represents the penalty value
we have designed based on different lic values. l̂i represents the ground truth.
The specific calculation formula is as follows:

Llog =
1
N

N∑

i=1

||li − l̂i||1, (8)

l̃i =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2.5 , lic = 0
2 , lic = 1

1.5 , lic = 2
1 , lic = 3
0 , lic = 4

(9)

Lstage =
1
N

N∑

i=1

l̃i. (10)

4 Experiments

In this section, we evaluate the performance of our proposed LRATNet on three
datasets and compare it with existing methods for predicting table logical posi-
tions. Additionally, we conduct comprehensive ablation experiments to validate
the effectiveness of LRATNet.

4.1 Datasets

We evaluate the performance of LRATNet on three datasets related to
table structure recognition, namely WTW [14], TableGraph-24K [22], and
ICDAR2013 [4]. Due to the limited size of the ICDAR2013 dataset, we adopted
a fine-tuning approach following initial training on the TableGraph-24K dataset.

WTW [14]: This dataset comprises wired tables found in natural scenes and
spans across multiple categories, making it a significant challenge. It includes
10,037 training images and 3,600 testing images.

TableGraph-24K [22]: This dataset is a subset of TableGraph-350K, consist-
ing of 20,000 training images and 2,000 testing images. It contains both wired
and wireless textual tables.
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ICDAR2013 [4]: This dataset consists of 156 PDF format tables from EU/US
government websites. However, since it lacks a dedicated testing set, we have
adopted the data processing approach used in TGRNet [22] to ensure a fair
comparison. We randomly divided the dataset into two halves, with one half
serving as the training set and the other as the testing set.

4.2 Implementation Details

All experiments were conducted using an RTX 3090 GPU with CUDA 11.3 and
PyTorch 1.11. The labels for the ICDAR2013 and TableGraph-24K (TG24K)
datasets were transformed following the TGRNet repository, whereas the labels
for the WTW dataset were transformed based on the LORE repository. For
TG24K and ICDAR13, we proportionally scaled the images to 768× 768 and
trained the proposed network for 200 epochs. The results for ICDAR2013 were
obtained by fine-tuning the model pre-trained on TG24K. As for the WTW
dataset, we proportionally scaled the images to 1024 × 1024 and trained the
model for 100 epochs with a batch size of 6. We employed the DLA-34 [24]
as the backbone with a dimension d set to 256. Additionally, we incorporated
3 layers of LRAT blocks. The initial learning rate was set to 0.0001 and was
reduced by 10% at the 70th and 90th epochs. Hyperparameters were configured
as follows: a = 2, b = 1, and β = 3.

4.3 Results on Benchmarks

We compared our proposed LRATNet with existing methods for table logical
location prediction, including ReS2TIM [21], TGRNet [22], and LORE [20].
While ReS2TIM is similar to ours in that it directly uses the ground truth
of the table cell as input, both TGRNet and LORE are end-to-end methods,
which may not achieve complete accuracy in table cell detection. To ensure a
fair comparison, we made slight modifications to their code. Instead of using the
partially accurate detected table cells for logical position prediction, we provided
the ground truth of the table cell information before the phase of logical position
prediction. The experimental results are summarized in Table 1.

Table 1. Comparison results with existing methods for logical position prediction. The
symbol ‘*’ denotes methods that have been reproduced.

Method ICDAR13 TG24K WTW

ReS2TIM [21] 17.4 - -
TGRNet* [22] 33.4 91.4 -
LORE* [20] 75.2 96.5 85.0
Ours 79.5 98.0 89.6

Our proposed LRATNet pays attention to both local and global context
information. Experimental results demonstrate that our approach outperforms
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ReS2TIM, TGRNet, and LORE on three datasets, highlighting the effective-
ness of our model in considering both local and global context information.
The ReS2TIM primarily relies on a cell relationship network, but its ability to
capture both local and global context information is limited, resulting in poor
performance. The TGRNet employs a GCN and uses global edge connections
as weights, which address both local and global context information to some
extent. However, when compared to a Transformer-based architecture [20], the
capacity of GCN for aggregating context information is limited. Consequently,
TGRNet performs better than ReS2TIM but falls short of LORE. LORE adopts
a Transformer-based structure and achieves commendable results. However, it
overlooks the significance of local context information.

The relatively high accuracy of the three methods for TG24K can be
attributed to the fact that this dataset primarily consists of scientific liter-
ature, features relatively simple structures, and benefits from ample training
data. However, the results of ICDAR2013, fine-tuned from models pretrained on
the TG24K, did not match the high performance of the TG24K. We speculate
that this discrepancy may arise from the limited size of the training dataset for
the ICDAR2013, hindering the model of ability to effectively capture its struc-
tural characteristics. For the WTW dataset, known for its intricate and diverse
structures, it presented a significant challenge. However, our model achieved an
impressive accuracy rate of 89.6%, highlighting its robust performance.

Considering that our method relies on the ground truth of table cells, it might
not always be possible to achieve perfectly accurate table cell detection results
in real situations. To validate the effectiveness of our approach, given that the
current accuracy of most table cell detection methods exceeds 80%, we randomly
reduced the number of cells by 10% and 20% for training our model. The results
are shown in Table 2. From the experimental results, it can be observed that
our proposed LRATNet maintains strong robustness even on incomplete table
structures.

Table 2. Robustness analysis results on the WTW dataset.

Method 100% cells 90% cells 80% cells

LRATNet 89.6 87.0 85.3

4.4 Ablation Study

In this section, we have performed a comprehensive set of ablation experiments
on the WTW dataset to evaluate the effectiveness of our proposed LRATNet.
The specific experiments are outlined as follows:
Analysis of the Effects of Our Proposed Row-LRAT, Col-LRAT, Spa-
LRAT, and LRAT. Our experimental results are presented in Table 3. From
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Table 3. Evaluation the significance of Row-LRAT, Col-LRAT, Spa-LRAT, and LRAT
modules. Acc represents the accuracy of predicting the logical position of each cell.

Exp Row-LRAT Col-LRAT Spa-LRAT LRAT Acc

1 � 88.4
2 � � 87.7
3 � � � 88.5
4 � � � 89.1
5 � � � � 89.6

the Exp. 1–2 and Exp. 4, it can be observed that our proposed LRAT and Spa-
LRAT have played a crucial role in improving the performance. This can be
attributed to their ability to focus on both local and global context information.
From Exp. 1 and Exp. 2, it is evident that Row-LRAT and Col-LRAT do not per-
form as well as the single Spa-LRAT. This is because they separately aggregate
context information from rows and columns, lacking spatial context information.
However, from Exp. 2 and Exp. 4, we observe that their performance improves
significantly after aggregation through LRAT. Therefore, it is evident that each
module we proposed plays a crucial role in enhancing the performance.
Analysis of the Internal Component Functions in LRAT. The experi-
mental results are presented in Table 4. In Exp. 1, only a 3-layer MHA block was
used, while in Exp. 2–5, GCN, Adjacency Encoding, CNN, and Lstage loss were
progressively incorporated. The experimental results indicate that the introduc-
tion of GCN and Adjacency Encoding leads to noticeable performance improve-
ments, further emphasizing the importance of considering both global and local
context information. The influence of the Lstage loss on performance is moder-
ate. Our analysis indicates that the primary contributions to improvements come
from the L1 loss, while the Lstage loss plays a supplementary role in enhancing
the accuracy of the model in predicting logical positions.

Table 4. Effectiveness of the LRAT in the proposed method.

Exp GCN Adjacency Encoding CNN Lstage Acc

1 84.1
2 � 88.0
3 � � 89.0
4 � � � 89.3
5 � � � � 89.6

Analysis of Weight Parameter Sharing for CNN and GCN Within
Each LRAT Module. The experimental results are detailed in Table 5. The
experimental findings demonstrate an accuracy improvement of 0.2% points
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whether using CNN or GCN. Furthermore, this approach results in a reduc-
tion in the total number of model parameters. Our analysis indicates that this
improvement can be attributed to the roles of CNN and GCN, both of which
primarily focus on aggregating local information. Given that different layers of
the Multi-Head Graph Attention (MGHA) module already perform information
aggregation at various depths, there is no need to further increase the depth
of CNN and GCN layers. A single layer suffices for effective local information
aggregation. Consequently, sharing these parameters within each LRAT module
proves to be a more effective strategy.

Table 5. Results of weight parameter sharing for CNN or GCN within each type of
LRAT module.

Exp GCN GCN (shared) CNN CNN (shared) Acc

1 � � 89.4
2 � � 89.4
3 � � 89.6

Analysis of LRATNet with Different Number of LRAT Blocks. We con-
ducted LRATNet experiments with two-layer, three-layer, and four-layer LRAT
blocks. The experimental outcomes are presented in Table 6. The results indicate
that the three-layer LRAT block exhibits a significant improvement compared
to the two-layer experimental results, while the four-layer LRAT block does not
yield a substantial improvement in performance. Taking into consideration both
model complexity and performance, we ultimately opted for a three-layer LRAT
block structure.

Table 6. The results of LRATNet with varying number of LRAT blocks.

Exp two-layers three-layer four-layer Acc

1 � 88.9
2 � 89.6
3 � 89.9

5 Conclusion

In this paper, We proposed LRATNet, a TSR model designed for predicting table
logical positions. LRATNet incorporates four modules: Row-LRAT, Col-LRAT,
Spa-LRAT, and LRAT, each individually aggregating information from rows,
columns, spaces, and the overall table. This approach maximizes the utilization
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of both local and global context information for modeling. LRATNet also utilizes
a multi-stage loss function to emphasize the accuracy of the four logical indices
for each cell. Experimental results demonstrate that our approach outperforms
existing methods on three public datasets.
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