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Abstract
Recent, substantial advancements in deep learning technologies have driven the flourishing
of computer vision. However, the heavy dependence on the scale of training data limits deep
learning applications because it is generally hard to obtain such a large number of data inmany
practical scenarios. And, deep learning seems to offer no significant advantage comparedwith
traditionalmachinemethods in a lack of sufficient training data. The proposed approach in this
paper overcomes the problem of insufficient training data by taking Swin Transformer as the
backbone for feature extraction and performing the fine-tuning strategies on the target dataset
for learning transferable feature representation. Our experimental results demonstrate that
the proposed method has a good performance for object recognition on small-scale datasets.

Keywords Transfer learning · Swin transformer · Object recognition

1 Introduction

Object recognition originated in the 1960s and is the basic task of computer vision. The
recent rise of deep learning has allowed for the evolution of image recognition [1]. As shown
in Fig. 1, object recognition usually contains three steps: (1) data preprocessing, (2) feature
extraction, and (3) category prediction. In traditional object recognition, the processes of
feature extraction algorithms binding classifier achieved a good performance in some simple
recognition tasks. These algorithms, including SIFT [2], HOG, and SURF [3] extracted
image features by artificial means. Therefore, its recognition accuracy depends heavily on the
capacity of feature extraction. Conventional classification algorithms include KNN, SVM,
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Fig. 1 The process of object recognition

and Bayesian classifier. Among them, the approach of SVM as a classifier and the HOG
as a feature extractor has gained great success in pedestrian detection [4]. However, these
approaches are unsuitable for large-scale complex image recognition tasks owing to several
drawbacks, including inefficiency, high cost, and lack of generalization ability. Concerning
the deficiency of traditional recognition methods, Hinton et al. [5] proposed the concept of
deep learning for the first time in 2006. After nearly ten years of development, the first deep
convolution neural network (CNN) Alexnet [6] was proposed and won the championship
in Beyond ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [7]. CNN has
become central to computer vision and other AI applications due to its excellent performance.
Since then, many notable CNN models like VGG [8], ResNet [9], and DenseNet [10] has
been progressing to replace conventional recognition algorithm.

On the other hand, self-attention-based architectures, especially the most popular trans-
former [11] structure, have garnered much interest in natural language processing (NLP)
today. The attention mechanism refers to the ability to selectively focus on specific relevant
information and ignore irrelevant information when inputting images or sentences, which is
inspired by the human visual system. The transformer is composed of an encoder-decoder
structure, which uses a self-attention mechanism to catch the long-range dependencies in the
data. Compared with a conventional method like LSTM [12], the transformer is easier to
train and more efficient. Generally, the training process of transformer structures consists of
two phases: pre-training on an extensive database and fine-tuning the model for downstream
tasks. Due to the efficiency and high transferability of the transformer, it has become the
popular choice in NLP.

With the tremendous success of the transformer in the field of NLP, researchers began
trying to combine the attention mechanism with CNN or replace some components of the
convolution network and get decent results. However, these methods are all variants of CNN
in nature [13]. Recently, a great deal of works began to transfer transformer structures to
visual tasks and achieved satisfactory results, such as ViT [14], Swin [15], DeiT [16], CoaT
[17], CaiTCoaT [18], and so on. Unlike a previous study, these networks are pure Trans-
former structures employing image patches as input. Presently, as a new approach for image
processing, the transformer has revolutionized the field of computer vision.

Inspired by the success of the transformer, we attempt to apply Swin Transformer for
small-scale object recognition. The current study is rarely conducted for small-scale object
recognition due to massive publicly available datasets like ImageNet [19] for model training.
However, it is not easy to acquire such data on a large scale in practical [20]. As a result,
research on object recognition suffered from severe overfitting due to insufficient training
data.

With the deepening of the research, it has been found that transfer learning can effectively
overcome the dilemma of insufficient data. The goal of transfer learning is to improve the
performance of target learning tasks by transferring adequate knowledge from one or more
source tasks. By sharing the low-level features across the source tasks and target task and fine-
tuning the high-level features in the target task, transfer learning effectively solves various
problems caused by insufficient samples. This paper first evaluates the transfer learning
capabilities of several typical CNN and transformer architectures according to the number
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Fig. 2 The process of fine-tuning

of trainable parameters and the accuracy of CIFAR-10 and CIFAR-100. Then ImageNet pre-
trained model are used to initialize the Swin Transformer architectures and are fine-tuned
using the CIFAR-10 and CIFAR-100. In this way, a precise fine-tuning strategy is determined
that is suitable for Swin Transformer. Moreover, the performance of the Swin Transformer on
several small-scale datasets is evaluated by the fine-tuning strategy. The final experimental
results show that our approach effectively helps improve themodel’s performance on a small-
scale dataset.

2 RelatedWork

2.1 Transfer Learning

Transfer learning refers to transferring model parameters learned in source tasks to a new
domain to improve the performance in a target task. Today, an increasing amount of work
with the transfer learning has been performed. Fine-tuning is a highly efficient way of transfer
learning. Figure 2 shows the detailed process of fine-tuning. The specific operation process
of the fine-tuning is divided into two steps: (1) train the models into source tasks and get the
pre-trained model; (2) transfer the parameters of the pre-trained model, freeze the low-level
and fine-tune the high-level parameters. This paper significantly speeds up the model’s con-
vergence by freezing some parameters. Moreover, the experiment analyses the relationship
between performance changes and the number of frozen parameters. The results demonstrated
that our method dramatically reduces training time while preserving satisfactory accuracy
compared to training the models from scratch.
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2.2 Transformer

The transformer was proposed byAswani et al. [11] in 2017 and soon became themainstream
framework in the field of NLP. Compared with the traditional LSTM, the parallelization
design of the transformer significantly reduced the time needed to train the network and over-
come computational performance and convergence issues caused by the problemof long-term
dependencies. Because of its unusual properties and high transferability, many researchers
have recently introduced a transformer into the task of computer vision. For example,Dosovit-
skiy et al. [14] first proposed a pure transformerwith an encoder-decoder structure and showed
a robust performance on many public datasets. ViT successfully resolved sharp increases in
computational complexity with the resolution size. The primary approach is to split an image
into fixed-size patches and send the segmented patch into a sequence of offset 2D patches
through patch embedding. Then the output is sent to the transformer encoder, and the con-
nection between each small patch is calculated through the multi-head self-attention (MSA)
mechanism. Finally, theMLP layers classify the corresponding original image. AlthoughViT
is quite expensive in computing, it is undoubtedly pushing the application of transformer in
computer vision to a new height. Liu et al. [15] proposed the Swin Transformer. Through the
operation of shifted window-based MSA, Swin Transformer greatly reduces the computa-
tional complexity. Moreover, a benefit from the hierarchical design, the size of the network’s
receptive field also increases layer by layer. Given the enormous success of these works,
various transformer models based on ViT have emerged in an endless stream. In this paper,
we compare the transfer learning performance of the Swin Transformer with several CNN
series and transformer series networks, and the results indicated that the transfer learning
performance of the Swin Transformer outperformed and outclassed the other models. the
ImageNet-1K [19] is employed to perform pre-training, and CIFAR-10 and CIFAR-100 [21]
datasets are used for fine-tuning.

2.3 Datasets

In this paper, the ImageNet [19] is employed to perform pre-training, and CIFAR-10 and
CIFAR-100 [21] datasets are used for fine-tuning. ImageNet is one of the most popular
datasets in the field of computer vision, with tens of millions of labelled images. Imagenet-
1k is a sub-datasets of Imagenet, it constitutes 1000 categories, and each category contains
1200 high-resolution colour images. CIFAR-10 is a computer vision dataset consisting of
10 categories of 32 × 32 colour images. The dataset comprises 60,000 images, of which
50,000 images are for training and 10,000 images are for testing. The CIFAR-100 dataset
has the same composition and image resolution as CIFAR-10, except that CIFAR-100 has
100 categories.

3 Method

3.1 Overall Architecture

Figure 3 presents the overall architecture of ourmethod. In this paper,we adopted Swin-B [15]
as the backbone for extraction. It follows a hierarchical modelling approach and comprises
four phases denoted by Stage 1 ∼ Stage 4. The difference between stages is that Stage 1 is
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composed of linear embedding and transformer blocks, and the others are composed of patch
merging and transformer blocks.

The input image is first divided into non-overlapping patches with a patch size of 4 × 4
by a patch partition module to convert it into sequence embeddings, with a fixed size of
224 × 224 × 3 (for RGB image). After this process, the channel dimension is changed to
48 (4 × 4 × 3), and the output is served as the input of Stage 1. In Stage 1, the patches
are first extended with a linear embedding layer, and then several Swin Transformer blocks
are employed for multi-scale feature extraction [22]. Stage 2 ∼ Stage 4 are similar to Stage
1 except replacing the linear embedding layer with a patch merging operation to generate
hierarchical feature representations.

3.2 Patch Merging

Briefly, patch merging is a particular down-sampling method for keeping the information
intact, which is analogous to the focus process in Yolo [23]. The main effect is forming
a hierarchy with increased network depth by reducing the feature resolution to half of the
original output. As shown in Fig. 4, a 4 × 4 with a single-channel image is first divided
into four patches, with each patch of 2 × 2 adjacent spaced pixels (represented as the same
colour). Then, the four patches are concatenated together, resulting in the feature resolution
reduced by 2× and the feature dimension increased by 4×. Finally, the feature dimension is
controlled at 2× the original dimension with a linear layer applied.

3.3 Swin Transformer Block

Swin Transformer block is composed of an even number of transformer block. Compared
with the conventional transformer blocks, it replaces the standard multi-head self-attention
module (MSA)with awindowmulti-head self-attention (W-MSA) and shifted-windowmulti-
head self-attention (SW-MSA), while the other structures remain relatively constant. Figure 5
corresponds to two consecutive Swin Transformer blocks structure. Both are composed of

Fig. 3 The architecture of a Swin Transformer

Fig. 4 The process of Patch Merging. (Color figure online)
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Fig. 5 Two consecutive Swin Transformer Blocks

Layer Norm (LN) layer, residual connection and 2-layerMLP, exceptW-MSA and SW-MSA
are alternately used.

The specific process of the Swin Transformer block is as follows. In the first block, the
Normalized Pl−1 is put into the W-MSA module and is connected with Pl−1 by a residual
layer to produce P̂l . Similarly, P̂l passes across LN and 2-layer MLP, and then a residual
layer is applied to connect with itself for producing the Pl . In the second block, SW-MSA
replaces W-MSA while all other operations are kept. Based on such a window partitioning
mechanism, consecutive Swin Transformer blocks can be formulated as:

P̂l = W-MSA(LN(Pl−1)) + Pl−1 (1)

Pl = MLP(LN(P̂l)) + P̂l (2)

P̂l+1 = SW-MSA(LN(Pl)) + Pl (3)

Pl+1 = MLP(LN(P̂l+1)) + P̂l+1 (4)

where l represents block l, P̂l represents the output features of the W-MSA module of
block l, P̂l+1 represents the output features of SW-MSA module of block l + 1, and Pl

represents the module of block l. W-MSA represents multi-head self-attention using regular
window partitioning configurations. LN represents Layer Normalization. MLP represents a
multi-layer perceptron. SW-MSA represents multi-head self-attention using shifted window
partitioning configurations.

3.4 W-MSA and SW-MSA

In NLP tasks, the relation between a single patch and the other patches is calculated with
a standard MSA to conduct global self-attention. However, the global computation results
in computational complexity which scales up exponentially with resolution size in complex
object recognition tasks.

The W-MSA is designed to reduce the computational effort. Compared to conventional
MSA, W-MSA divides the images (h × w) into nonoverlapping local windows with a patch
size of M × M . Then, the relation of patches is calculated in local windows. The operation
dramatically reduces the computational burden. The specific computational complexity of
MSA/W-MSA is described as follows:

�(MSA) = 4h × w × C2 + 2(h × w)2 × C (5)
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Fig. 6 A regular window partitioning strategy and a shifted window partitioning strategy

Fig. 7 Illustration of cyclic shift strategy

�(W-MSA) = 4h × w × C2 + 2M2 × h × w × C (6)

The mechanism of partition windows dramatically reduces the computation cost but lacks
connections across windows, limiting model capability. To extract interaction information
while keeping the efficient computation of non-overlapping windows, SW-MSA is intro-
duced.As shown inFig. 6, layerl represents regular partition strategy (W-MSA), and layerl+1
represents shifted window partitioning strategy (SW-MSA). The 8 × 8 feature map is first
divided into four local windows of size 4 × 4(M = 4) with W-MSA. Then, SW-MSA takes
the place of local windows by traveling to the left upper corner by (M/2, M/2) pixels from
the regularly partitioned windows.

The cyclic shift is adopted in SW-MSA by combining the computation in four local
windows like the regular partition strategy.As shown inFig. 7, the localwindows are indicated
by 0–8. The (0, 1, 2) is first moved to the last row. Then, (3, 6, 0) of the newwindow ismoved
from the left to the right. After that, (5, 3), (2, 6, 8, 0), (1, 7), and (4) are considered a new
local window.
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Table 1 Performance comparison with other approaches on the CIFAT-10 and CIFAR-100 dataset

Model Model type Params (M) CIFAR-10 (%) CIFAR-100 (%)

VGG16bn [8] CNN 132 94.00 73.17

WRN28-12 [24] CNN 53 95.67 79.57

ResNeXt [9] CNN 68 96.42 82.69

NesT-B [25] Transformer 90 97.20 82.56

CCT-6/3x1B [26] Transformer 3.17 95.29 77.31

Our method Transformer 88 96.71 90.70

4 Results

In this section,we carry out several experiments that reflect the various aspects of the proposed
method. At first, to investigate the effectiveness of our method, we compare it with some
existing approaches on CIFAR-10 and CIFAR-100. Then, by freezing different layers, we
study the influence of the pre-training model for the source task.

4.1 Experimental Settings

The experiments are performed on the framework of Pytorch (1. 4. 0), with NVIDIA-3070
for GPU acceleration, Intel (R) Core (TM) i7-9700k CPU and 16G memory. The operating
system is Ubuntu 18.04 and the programming language is Python. We set the initial learning
rate to 0.001, the learning rate decay to 0.95, and the minimum learning rate to 0.0000001.
The AdamWoptimizer is utilized during model training. Due to the GPUmemory limitation,
the batch size is set to 8.

4.2 Experiments

To evaluate the performance of our method, we compare it with existing methods, includ-
ing three Transformer-based and three classic CNN-based models. Table 1 compares our
approach with these architectures in terms of both accuracy and the number of network
parameters. Typically, the higher accuracy indicates the more robust model’s predictive
capacity. Overly small parameters limit the model’s capacity, while too many parameters
lead to overfitting.

VGG16bn achieves the lowest accuracy with the highest complexity compared to the
other models. It means that the performance of VGG16bn is significantly different from
other models. The remaining two classic CNNs, WRN28-12 and ResNeXt64, perform better
than VGG16bn. For ResNeXt64, the accuracy of 96.42% and 82.69% is achieved, 0.75%
and 3.12% higher than WRN28-12, respectively. The above analysis implies that ResNeXt
has the highest competitiveness among the three tested CNN models.

In Transformer-based models, NesT-B has superior accuracy compared to CCT-6/3x1B,
with the accuracy of 97.20% and 82.56% on CIFAR-10 and CIFAR-100, respectively. It
means that the NesT-B had a better prediction capability than CCT-6/3x1B. It is interesting
to observe that although the accuracy of CCT-6/3x1B is inferior to CCT-6/3x1B, the number
of parameters involved is far less than that in other models. Therefore, CCT-6/3x1Bmay have
some advantages concerning some simple tasks. For ourmethod, the accuracy onCIFAR-10 is
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Table 2 The accuracy on
CIFAR-10 for the original model
and the model only using
W-MSA

Module/test CIFAR-10 CIFAR-100

W-MSA/SW-MSA 96.71 90.70

W-MSA × 2 90.13 82.89

Table 3 The accuracy of the cross-dataset test

Train/test CIFAR-100-A CIFAR-100-B CIFAR-100-C CIFAR-100-D

CIFAR-100-A 98.30 47.55 36.77 23.05

CIFAR-100-B 81.50 95.15 37.60 24.45

CIFAR-100-C 88.60 56.70 93.90 30.40

CIFAR-100-D 86.00 56.25 41.83 93.30

only 0.49% lower than the highest NesT-B,while the accuracy onCIFAR-100 is 8.01%higher
than the second-highest NesT-B. The results clearly show that our method performs better
than other tested models when meeting complex classification tasks. Although our approach
shows no clear advantage in terms of the number of model parameters, it demonstrates the
superior prediction accuracy and the stability of the model. Based on the results, our method
performs better performance than others.

To test the role of SW-MSA in the model, we replace the SW-MSA with the W-MSA. As
we can see from Table 2, the performance of the model only usingW-MSA decreases sharply
on CIFAR-10 and CIFAR-100 compared to the initial model. It is known from the above (see
Method) descriptions that the main difference betweenW-MSA and SW-MSA is information
interaction between the partitioned windows. Based on these reasons, we consider that the
fixed window limits the predictive ability of models. This also indicates the necessity of
SW-MSA.

To evaluate the association between the generalization capacity of the proposedmodel and
the size of the source dataset, we carry out cross-dataset experiments on the CIFA-100. The
CIFAR-100 is divided into four non-overlapping subsets: CIFAR-100-A (10), CIFAR-100-
B (20), CIFAR-100-C (30), and CIFAR-100-D (40). CIFAR-100-A contains classes 1-10;
CIFAR-100-B contains classes 11-30; CIFAR-100-C contains classes 31-60; CIFAR-100-D
contains classes 61-100. Table 3 shows the accuracies of our proposedmethod with the cross-
dataset settings, where rows and columns exhibit the datasets used for training and testing.
Obviously, the best result is obtained when a model is trained and tested on the same dataset.
The performance decreases rapidly when testing on the other datasets, implying a specific
dataset carries distinctive characteristics. Moreover, the C model (the model is trained on the
CIFAR-100-C) achieves higher accuracy than theDmodel, which is trained onmore samples.
While there are many possible reasons for this result, we considered it more probable that
CIFAR-100-C contains greater species richness. We ascribe this performance boost to the
fact that the CIFAR-100-C contains more similar object information to the target domain. For
example, CIFAR-100-C contain bicycle, otter, and flatfish, while the target domain (CIFAR-
10) contains motorcycle, beaver and aquarium fish. They are very close categories. The
specific reasons need to perform studies on datasets containing more samples.

We also study the effect of correlations between the source and target dataset on model
accuracy without fine-tuning. The four divided independent sub-dataset of CIFAR-100 are
used as the source dataset and CIFAR-10 as the target dataset. As shown in Table 4, we carry
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Table 4 The generalization accuracy on 10 classes of CIFAR-10 (without fine-tuning )

Target/source CIFAR-100-A CIFAR-100-B CIFAR-100-C CIFAR-100-D CIFAR-100

Airplane 44.4 42.7 62.2 68.2 65.0

Automobile 70.4 85.0 91.5 71.7 82.6

Bird 49.3 53.4 57.5 59.1 65.4

Cat 34.5 44.3 56.7 49.6 58.4

Deer 44.4 49.8 62.5 46.7 54.4

Dog 60.0 49.0 61.5 51.9 62.8

Frog 77.2 83.6 77.5 81.3 85.0

Horse 72.0 75.9 60.4 68.2 73.5

Ship 49.4 72.0 67.1 61.6 76.4

Truck 78.6 78.3 58.7 82.7 69.4

Average accuracy 58.0 63.4 65.6 64.1 69.3

Table 5 The effect of the number of layers fine-tuned on model performance

Frozen layers CIFAR-10 (%) Time (min) CIFAR-100 (%) Time (min)

1, 2, 3, 4 76.21 174 34.4 232

1, 2, 3 85.98 228 67.84 276

1, 2 95.54 489 87.61 658

1 95.71 534 87.97 697

NONE 96.71 769 90.70 954

None pre-trained 96.43 – 90.39 –

‘NONE’ means no layer is frozen

out cross-dataset experiments and report the accuracy of the target dataset. On the automobile
dataset, the accuracy of the C and Dmodels is significantly higher than the other two models.
The primary reason is that the source and target datasets have similar feature spaces, such
as automobile-bus and automobile-pickup truck. Our analysis suggests that The ability to
transfer learning is influenced by the correlations between the source and target datasets.
In addition, we also find that although CIFAR-100 has the complete data of the other four
sub-dataset, it does not achieve the highest accuracy in each class. It means that while source
datasets have the same class, their amount of knowledge can be transferred differently.

This part investigates the effect of fine-tuning on the model’s performance and studies
the fine-tuning setting required to achieve the best performance. We first divided the model
into five layers for fine-tuning according to the structure, with each stage being divided into
a layer, and the remaining MLP is the last layer. Specifically, fine-tuning experiments are
organized into two phases. We first initialize the model with the public ImageNet pre-trained
and freeze all the layers of the pre-trained network. Then we adopt a fine-tuning strategy of
gradually unfreezing one layer at a time, starting from layer 1.

Table 5 shows the effect of the number of layers fine-tuned on model performance. We
first fine-tune the model by retraining the MLP layer while the rest of the layers are frozen.
After that, we unfreeze the next layer and repeat the strategy until all layers are fine-tuned.
As the fine-tuning goes deeper by layer, the accuracy of the model becomes higher. On
CIFAR-10 and CIFAR-100, the prediction accuracy is improved from 76.21 to 96.71% and
34.40% to 90.70%, respectively. Compared to fine-tuning pre-trained models, the accuracy
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Table 6 Comparison of performance over the model on different sizes of the training dataset

Pre-trained 1%-CIFAR-10 2%-CIFAR-10 5%-CIFAR-10 10%-CIFAR-10

CIFAR-100-A 83.52 87.00 91.56 91.43

CIFAR-100-B 84.26 87.20 91.90 91.53

CIFAR-100-C 85.42 88.30 92.33 92.19

CIFAR-100-D 83.66 87.67 92.15 92.39

CIFAR-100 85.61 87.88 92.52 92.55

ImageNet 1K 86.74 89.43 93.27 93.61

NONE 74.27 87.15 90.74 92.11

of training the models from scratch is decreased by 0.28% and 0.31%, respectively. However,
we do not think that the best recognition accuracy is the best fine-tuning setting for small-
scale object recognition. Because fine-tuning multiple layers would inevitably retrain the
weights associated with the features, resulting in too many training parameters. For small-
scale datasets, a huge number of training parameters usually lead to overfitting. Therefore, it
is necessary to balance the degree of fine-tuning. As seen in Table 5, when layers 1 and 2 are
frozen, themodel achieves 95.54%and87.61%of accuracy,which is close to the best accuracy
and only takes less than 70% of training times compare to fine-tune all layers. It means using
fewer parameters while maintaining good accuracy. Comprehensive consideration, freeze
layers 1 and 2 is the more suitable choice for small-scale object recognition.

In this part, we follow the best fine-tuning strategy (freeze layers 1 and 2) to evaluate our
method’s performance on a small-scale dataset. The training datasets are 1%, 2%, 5%, 10%
of CIFAR-10, selected at random, respectively, while keeping the complete training dataset
of CIFAR-10. From the experimental results in Table 6, the best accuracies achieved from
our fine-tuning strategy are all higher than without fine-tuning. And the smaller the number
of training samples, the greater the accuracy gap. When only 1% of CIFAR-10 is used, the
enormous accuracy gap reached 12.47%. The leading cause of the result is that the model
trained on a small-scale dataset without fine-tuning, and learning too many insignificant
features results in overfitting. Moreover, when 5% training data of CIFAR-10 is used, the
highest accuracy of 92.52% is achieved. The accuracy is close to the original accuracy of
96.71% in Table 6. It is noteworthy that themodel achieves better performance than the others
when the ImageNet-1K is employed as a pre-training dataset. This suggests that we can select
a larger pre-training dataset to gain better model performance for small-scale recognition in
practical applications.

5 Conclusion

For a long time, the small-scale dataset has been a significant problem plaguing the field
of object recognition. This paper takes the Swin Transformer as the base model and fine-
tunes the model on the target dataset. In the case of only using 5% of the CIFAR-10, we
achieve an accuracy of 92.52%, very close to the original accuracy. From the above numerous
experiments, we conclude that our method effectively improves the accuracy and robustness
of image recognition under the small-scale dataset. In our future work, we will apply the
method in practice and investigate other complex object recognition tasks.
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