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Abstract—In recent years, Transformer has achieved domi-
nance across a multitude of disciplines, attributed to its superior
global modeling capabilities. Currently, the Mamba model, dis-
tinguished by its linear complexity, is emerging as a formidable
challenger. Despite existing advancements, considerable room
for improvement remains in point cloud processing, especially
within embedded application contexts such as robotic naviga-
tion and autonomous vehicles. Based on this observation, we
propose PointABM, a hybrid model that integrates Mamba and
Transformer architectures to enhance global feature extraction,
thereby improving the performance of 3D point cloud analysis.
More specifically, first we design a Transformer Block to en-
hance the representation of global features. Then, we propose a
bidirectional Mamba, which comprises both a traditional token
forward SSM and an innovative backward SSM. Experimental
results demonstrate that integrating Mamba with Transformer
significantly enhances the model’s capability to analyze 3D point
clouds, offering substantial improvements in both efficiency and
accuracy for critical applications.

Index Terms—3D Point Cloud, Bidirectional Mamba, Trans-
former, Robotic Navigation, Autonomous Vehicles.

I. INTRODUCTION

Point cloud analysis is one of the most widely studied
fields of computer vision [1]. It has wide applications in fields
such as autonomous vehicles and robotic navigation, playing
a crucial role in the development of artificial intelligence. 3D
point clouds are primarily obtained through LiDAR scanning.
Continuous-wave LiDAR operates by emitting laser waves
from a transmitter. When these waves strike an object, they
are reflected back and captured by a receiver within LiDAR
scanner. The distance to the object is then calculated by mea-
suring the phase shift of the reflected laser light. To enhance
processing speed and reduce data transmission loads, this raw
laser data can be processed directly on edge computing devices
located within LiDAR system. These edge devices analyze the
data in real-time, generating and processing 3D point cloud
data locally.

As a 3D image, Point clouds have their own unique data
characteristics. It composed of numerous unordered and unpat-
terned points in three-dimensional space. This necessitates that
the entire developmental trajectory of point cloud research be
devoted to addressing the challenge posed by the disordered
nature of point clouds. To address this challenge, a variety
of methods in deep learning have arisen. Vox-based method
voxelize the 3D space to enable the application of 3D discrete

convolutions [2]. However, this ignores the sparsity of the 3D
point cloud.

Then first work of point-based PointNet [3] and PointNet++
[4] utilise single symmetric function,max pooling to solving
this problem. Subsequently, series point-base models such as
PointNeXt [5], PointMLP [6], PointCNN [7] etc., training
form scratch comes out. Transformer-based model achieve
remarkable progress by its attention mechanism. Attention can
effectively capture the relationship between points in point
cloud, but also posed quadratic complexity for Transformer
[8]. This will cause the increase in model parameters and
computational requirements. The permutation invariance of the
Transformer endows it with higher compatibility compared to
other models. This establishes a foundation for our upcoming
proposal to integrate the Transformer and Mamba [9] models.

Recently, Mamba first incorporates the integration of time-
varying parameters into state space models, bringing a new
selection mechanism to effectively compress context. Addi-
tionally, it proposes an efficient hardware-aware algorithm to
enhance performance. This makes it a strong challenger to
Transformers. However, the application of Mamba to point
clouds is limited by its unidirectional model, resulting in
less than expected performance in the field of point cloud
processing.

To address these issues, we present PointABM. Mamba and
Transformer are innovatively combined within a novel method.
The powerful self-attention mechanism of the Transformer is
leveraged to initially encode the point cloud features, aiming
to obtain a more comprehensive representation of local fea-
tures. Furthermore, its inherent input permutation invariance
provides a foundation for its integration with Mamba. In order
to break through the limitations of mamba’s unidirectional
encoding of point cloud features, we introduced Bidirec-
tional Mamba to process point cloud data from both for-
ward and reverse directions. PointABM successfully maintains
the lightweight characteristics of Mamba while effectively
leveraging the powerful feature processing capabilities of the
Transformer’s self-attention mechanism. And we adopted a
masked autoencoder pre-training strategy similar to Point-
MAE, and our method demonstrated exceptional adaptability
to this approach.

In summary, this work makes the following contributions:
• We propose PointABM, a hybrid model that includes
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both Transformer and Mamba, retains the lightweight
characteristics of Mamba, and leverages the self-attention
mechanism of Transformers.

• Mamba and Transformer architectures are successfully
combined and applied to point cloud analysis, achieving
substantial performance improvements with a relatively
small increase in the number of parameters.

• Experiments reveal that PointABM achieves superior
performance compared to the Transformer based models.

II. RELATED WORK

In recent computer vision field, point cloud plays an im-
portant role in representing the 3D sence because of its rich
expression information. The purpose of point cloud analysis
is to identify the overall attributes of the point cloud, enabling
a clearer understanding of its structure and composition for
applications that rely on accurate 3D representations. Initially,
point clouds were converted into multi-view data(Multi-View
convolutional neural network [10]), voxels(VoxNet [2]), or
meshes as indirect methods to learn the representation of
3D objects. However, these methods often lead to the loss
of the objects’ 3D geometric information or excessive mem-
ory consumption.Point-based methods like PointNet [3] and
PointNet++ [4] effectively address the limitations of earlier
techniques by processing raw point clouds directly, thereby
preserving the original geometric integrity. PointNet, intro-
duced by Qi et al., uses a shared multilayer perceptron (MLP)
to learn features at the individual point level, aggregating
them into a global descriptor via max pooling. To better
capture local geometric structures, PointNet++ extends this
framework with a hierarchical approach that involves sampling
and grouping layers, allowing for detailed multi-scale analysis
of point cloud data.

A. Point Cloud Transformers

After the debut of the Point Cloud Transformer [11] (PCT),
Transformer [8] have continued to be among the most com-
monly used models in point cloud analysis [12], [13]. This
model leverages the powerful self-attention mechanism of
Transformers to better capture the complex spatial relation-
ships in point clouds by dynamically focusing on different
parts of the input data, enabling it to effectively understand and
represent the intricate structures and patterns present within
point cloud datasets. The success of PCT demonstrated how
to handle the unordered nature of point cloud data through
self-attention, while effectively extracting information about
the relative positions and attributes between points.

Subsequently, PointBERT [14] and PointMAE [15] each
proposesed innovative pre-training methods for point clouds,
effectively integrating self-supervised learning within the
Transformer architecture. Both models employ strategy of
randomly masking portions of point cloud, significantly en-
hancing their ability to process and comprehend the intricate
features of point cloud data. Furthermore, these two methods
provide stable and reliable pre-training strategies for sub-
sequent models, which in turn reduces the dependency on

large labeled datasets. This advancement makes it possible to
achieve high performance in point cloud analysis even with
limited annotated data, paving the way for more efficient and
scalable solutions in the field.

The exceptional performance of Transformers makes them
highly suitable for integration into autoencoders, substantially
enhancing the effectiveness of downstream point cloud anal-
ysis tasks. However, the attention mechanism’s O(n2d) time
complexity, with n as the input token sequence length and d as
the Transformer dimension, leads to substantial computational
challenges as the input size grows, limiting their efficiency.

B. State Space Models

State Space Models (SSM), inspired by continuous sys-
tems, have emerged as promising frameworks for modeling
sequential data. The Structured State Space Sequence Model
(S4) [16], a predecessor in this field, is notable for capturing
long-range dependencies with linear complexity and strong
performance across various domains. To mitigate computa-
tional burdens, methods like HTTYH [17], DSS [18], and S4D
[19] employ diagonal matrices within S4. Building on S4, the
newly proposed S6 model introduces significant advancements
in efficiency and scalability. Mamba [9] further enhances this
by introducing selective SSM mechanism, achieving linear-
time inference and effective training through hardware-aware
algorithm. This innovation has extended to various domains,
inspiring works in graph modeling, medical segmentation, and
video understanding.

Building on the foundation of the S4 model, the newly in-
troduced Mamba (S6) model incorporates significant advance-
ments that enhance both efficiency and scalability. Mamba
introduces a selective State Space Model (SSM) mechanism,
achieving near-linear complexity and enabling highly effective
training through a hardware-aware algorithm. This approach
optimizes performance while adapting to the capabilities of
the underlying hardware infrastructure, making it a significant
leap forward in the field.

PointMamba [20] is the first to introduce the Mamba model
into the field of point cloud classficiation. However, its per-
formance did not meet the expected standards. Consequently,
this paper proposes an innovative approach by integrating
Transformers with the Mamba model to harness the strengths
of both technologies. This hybrid architecture aims to improve
the robustness and accuracy of point cloud classficiation by
combining the Mamba model’s efficient processing capabili-
ties with the powerful contextual understanding provided by
Transformers.

III. METHOD

A. Overall

Our method is designed to leverage the strengths of both
the Transformer and Mamba models in the field of 3D point
cloud analysis. To achieve this, we devise a Transformer
block to facilitate the integration of both models during the
manipulation of 3D point clouds. In this section, we introduces
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Fig. 1. The pipeline of PointABM. Initially, FPS and KNN are employed to extract keypoints and segment them into patches from the input point cloud.
Then sent them into Transformer Encoder. Finally, the encoded features are loaded into a Mamba Encoder composed of N bidirectional Mambas.

multi-head self-attention, bidirectional Mamba, and the key
design elements.

B. Transformer Block

PointABM utilizes a standard Transformer architecture that
comprises multi-head self-throwing blocks and feed-forward
network (FFN) blocks. The process is shown in Figure 1(a).
After resorting, positional encoding is assigned to the features
of each center point.

X ′ = X +

(
Pos · P +

n∑
i=1

αiϕi(Pos, P )

)
(1)

The encoded features are segmented and fed into individual
self-attention heads. For each head, the input features are
multiplied by three learnable weight matrices: WQ,WK ,WV .

Q = WQX
′; K = WKX ′; V = WV X

′. (2)

The Q,K, V matrices undergo self-attention processing.

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
V (3)

Subsequently, the processed features are then combined,
rejoined to the original features through a residual connection,
and normalized. The introduction of self-attention also en-
hances our model’s adaptability to pre-training methods based
on masked autoencoder.

C. Bidirectional Mamba Block

The original design of the Mamba block was intended for
one-dimensional sequence prediction, which leads to a lack of
understanding of the global spatial information required for
Point Clouds.To address this issue, we introduced Bidirectional
Mamba(Bi-Mamba), which process prediction with forward
and backward SSM.

Algorithm 1 Transformer Block Process

Input: token sequence Pn−1 : (S,G,C)
Number of heads H

Output: token sequence Pn : (S,G,C)
1: PE ← Positional Encoding(G, C)
2: x← x+ PE
3: PE ← Initialize Positional Encoding with dimensions (C)
4: for each Head in P do
5: Qh ← LinearQh (Pn−1)
6: Kh ← LinearKh (Pn−1)
7: Vh ← LinearVh (Pn−1)
8: Ah ← Attention(Qh,Kh, Vh)
9: Pn−1 ← Ah + Pn−1

10: Pn−1 ← Norm(Pn−1)
11: FFNinput ← Linear(ReLU(Linear(Pn−1)))
12: Pn−1 ← Pn−1 + FFNinput

13: Pn−1 ← Norm(Pn−1)
14: end forreturn Pn : (S, G, C) =0

The backward SSM and forward SSM possessed by Bi-SSM
are utilized to process point cloud features. For each direction,
one-dimensional convolution is first applied to the input point
x to obtain x′. Subsequently, an MLP layer projects x′ onto
Bo, Co, and ∆o.

x′ = SILU(Conv1d(Linear2(Norm(Pn−1)))) (4)

∆B0 = log(1 + exp(LinearA + ParameterA)) (5)

y0 = SSM
(
A0,∆B0 ⊗ Linear0(x′),Linear1(x′)

)
(x′) (6)
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Fig. 2. Transformer Block and Bidirectional Mamba Block.

Algorithm 2 Bidirectional Mamba Block Process

Input: token sequence Pn−1 : (S,G,C)
Output: token sequence Pn : (S,G,C)

1: P′
n−1 : (S,G,C)← Norm(Pn−1)

2: x : (S,G,C)← Linearx(Pn−1)
3: z : (S,G,C)← Linearz(Pn−1)
4: for o in {forward, backward} do
5: x′

o : (S,G,C)← SiLU(Conv1do(x))
6: Bo : (S,G,C)← LinearBo (x

′
o)

7: Co : (S,G,C)← LinearCo (x
′
o)

8: ∆o : (S,G,C)← log(1+ exp(Linear∆o +Parameter∆o ))
9: Ao(S,G,C,N)← ∆o ⊗ ParameterAo : (C,N)

10: Bo(S,G,C,N)← ∆o ⊗ Bo

11: yo : (S,G,C)← SSM(Ao,Bo,Co)(x
′
o)

12: end for
13: y′forward : (S,G,C)← yforward

⊙
SiLU(z)

14: y′backward : (S,G,C)← ybackward

⊙
SiLU(z)

15: Pn : (S,G,C)← LinearP (y′forward + y′backward) + Pm−1

16: Return: Pn =0

Then, ∆o is used to update Ao and Bo. After obtaining
yforward and ybackward via SSM, the values are passed through
a Z-gate and then summed to obtain the final output Po.

z = SILU(Linear3(Pn−1)) (7)

Pn = Linear′((yforward + ybackward)⊗ z) + Pn−1 (8)

IV. EXPERIMENTS

In this section, we will introduce the specific implemen-
tation details of the experiment. Then we evaluated the per-
formance of PointABM on ModelNet and three variants of
ScanObjectNN. Finally, we show the results of the ablation
study for our model.

A. Implementation Details

To address the issue of varying point cloud resolutions, we
divide points into different batches.

In Modelnet40 [31], the process begins by using farthest
point sampling to select a random set of 1024 points, which
are then divided into N = 64 point patches, each containing G
= 32 points. For ScanObjectNN [32] and ShapeNetPart [33],
with a point count of M = 2048, the division is into N = 128
patches, each holding G = 32 points.

The PointABM encoder features a combination of one
Transformer layer and 12 Bi-SSM layers, each with a feature
dimension C = 384. Each Transformer block consists of 8
heads. We utilize the AdamW optimizer and employ a cosine
learning rate decay strategy. During the pretraining phase, the
ShapeNetCore dataset [33], comprising 51,300 3D models,
serves as the pretranning dataset. The rest of the settings are
essentially the same as those used for training from scratch.
All experiments are conducted using one NVIDIA RTX 4090
GPU.

B. Experiments Results

Classification in ScanObjectNN [32]:
ScanObjectNN dataset comprises 15,000 objects segmented
into 15 categories, captured from real-world indoor envi-
ronments characterized by their cluttered backgrounds. This
dataset presents three distinct variants for testing and analysis:
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TABLE I
OBJECT CLASSIFICATION ON SCANOBJECTNN.

Methods Backbone Param.(M) FLOPs(G) OBJ-BG(%) OBJ-ONLY(%) PB-T50-RS(%)
Supervised Learning Only

PointNet [3] - 3.5 0.5 73.3 79.2 68.0
PointNet++ [4] - 1.5 1.7 82.3 84.3 77.9
PointCNN [7] - 0.6 0.9 86.1 85.5 78.5
DGCNN [21] - 1.8 2.4 82.8 86.2 78.1
PRA-Net [22] - - - - 81.0
MVTN [23] - 11.2 43.7 - - 82.8
PointNeXt [5] - 1.4 1.6 - - 87.7
PointMLP [6] - 12.6 31.4 - - 85.4
DeLA [24] - 5.3 1.5 - - 90.4

Training from scratch
PointMamba [20] Mamba 12.3 3.1 88.29 87.78 82.48
PointABM(ours) Mamba & Transformer 15.1 9.6 91.57 90.36 86.19

Training from pre-training
Point-BERT [14] Transformer 22.1 4.8 87.43 88.12 83.07
MaskPoint [25] Transformer 22.1 4.8 89.30 88.10 84.30
Point-MAE [15] Transformer 22.1 4.8 90.02 88.29 85.18
Point-M2AE [26] Transformer 15.3 3.6 91.22 88.29 85.18
PointMamba-pre [20] Mamba 12.3 3.1 90.71 88.47 84.87
PCM [27] Mamba 34.2 45.0 - - 88.10
PointABM-pre(ours) Mamba & Transformer 15.1 9.6 93.29 92.43 88.29

TABLE II
OBJECT CLASSIFICATION ON MODELNET40.

Methods Param.(M) FLOPs(G) OA(%)
Supervised Learning Only

PointNet [3] 3.5 0.5 89.2
PointNet++ [4] 1.5 1.7 90.7
PointCNN [7] 0.6 0.9 92.2
DGCNN [21] 1.8 2.4 92.9
PRA-Net [22] - - 93.1
MVTN [23] 11.2 43.7 93.8

PointNeXt [5] 1.4 1.6 94.0
PointMLP [6] 13.2 31.4 94.0

DeLA [24] 5.3 1.5 94.0
PointMamba [20] 12.3 3.1 92.4
PointABM(ours) 15.1 9.6 92.6

Training from pre-training
Point-BERT [14] 22.1 4.8 93.4
MaskPoint [25] 22.1 4.8 93.8
Point-MAE [15] 22.1 4.8 94.4

Point-M2AE [26] 15.3 3.6 94.0
PointMamba-pre [20] 12.3 3.1 93.6

PCM [27] 34.2 45.0 93.4
PointABM-pre(ours) 15.1 9.6 93.1

OBJ BG, OBJ ONLY, and PB T50 RS, each designed to
evaluate different aspects of object recognition under vary-
ing complexly conditions. The configuration for our ex-
periments taking a subset of 2,048 points per object and
using rotation as data augmentation. PointABM surpasses
most effective Transformer-based method PointMAE, 3.58%,
4.14%, 3.42% on OBJ BG, OBJ ONLY, and PB T50 RS.

TABLE III
OBJECT SEGMENTATION IN SHAPENETPART.

Methods Param.(M) mIoUC(%) mIoUI(%)
Training from scratch

PointNet [3] 3.6 80.4 83.7
PointNet++ [4] 1.0 81.9 85.1
DGCNN [21] 1.3 82.3 85.2

Transformer [8] 27.1 83.4 85.1
PointABM(ours) 20.0 84.1 85.7

Training from pre-training
OcCo [28] 27.1 83.4 84.7

PointContrast [29] 37.9 - 85.1
CrossPoint [30] - - 85.5
PointBERT [14] 27.1 84.1 85.6
Point-MAE [15] 27.1 84.2 86.1

PointMamba [20] 17.4 84.4 86.0
PointABM(ours) 20.0 84.1 86.0

Besides, PointABM also exceeding Mamba-based mothod
PointMamba 2.58%, 3.96%, 3.33%.

Classification in Modelnet40 [31]:
Modelnet40 is a widely recognized synthetic dataset for 3D
object classification, comprising 12,311 clean CAD models
across 40 categories. The dataset is conventionally split into
9,843 instances for training and 2,468 for testing, adhering
to established protocols. Each category is represented by 100
unique models, establishing ModelNet40 as a fundamental
benchmark in the field. During training, random scaling and
translation are employed to enhance generalization. Despite
its status as a clean dataset, PointABM’s inability to fully
demonstrate interference resistance still resulted in an impres-
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TABLE IV
THE EFFECT OF TRANSFORMER EMBEDDING.

fusion feature dimension Param.(M) OBJ BG(%) OBJ ONLY(%) PB T50 RS(%)

None 384 12.3 88.30 87.78 82.48
Concatenation 768 47.7 90.72 88.29 84.62
Residual Connection 384 14.8 90.43 89.15 84.55

TABLE V
THE EFFECT OF BIDIRECTIONAL MAMBA.

method feature dimension Param.(M) OBJ BG (%) OBJ ONLY (%) PB T50 RS (%)

None 384 12.3 88.30 87.78 82.48
Bi-SSM 384 12.5 91.22 89.84 85.94
Concatenation 768 48.1 91.57 88.81 84.17
Residual Connection 384 15.1 91.57 90.36 86.19

sive accuracy rate of 93.1 %.
Segmentation in ShapeNetPart [33]:

ShapeNetPart dataset is a widely recognized synthetic dataset
for 3D object part segmentation, comprising 16,881 metic-
ulously annotated CAD models across 16 categories. Each
model is detailed with annotations for various components of
the object, such as the legs, seat, and back of a chair, making
it an ideal choice for research and development of algorithms
aimed at fine-grained recognition and segmentation of complex
3D objects.

C. Ablation Study

To improve the effectiveness of each component, a study
was conducted on the utility of each component within the
architecture using the ScanObjectNN [32] dataset. And to
ensure the purity of the ablation study results, all our ablation
experiments were conducted using training from scratch.

Transformer Block
As the first to integrate Transformer and Mamba in the
point cloud field, we attempted two feature fusion methods:
concatenation and residual connection. TABLE.II shows each
feature fusion method brought a noticeable improvement.
This indicates that Transformer embedding can effectively
offer more refined feature information to the Mamba model.
Concatenation feature dimension even take better accuracy.
But with the doubling of feature dimensions, the size of the
model increases dramatically. Moreover, in the subsequent
ablation studies of BI-SSM, the feature fusion method using
residual connections demonstrated superior compatibility.

Bidirectional Mamba Block
In this section, the focus is on examining the effectiveness
of the Bidirectional Mamba and exploring its outcomes when
combined with two different feature fusion methods within
the Transformer block. We achieved improvements of +2.92%,
+2.06%, and +2.06% on three variants by directly using Bidi-
rectional Mamba. Additionally, after applying Bidirectional
Mamba following a residual-connected Transformer Block,
we observed further enhancements of +3.27%, +2.58%, and

+3.71%. This demonstrates the effectiveness of Bidirectional
Mamba for the classification of unordered point clouds.

V. CONCLUSION

This paper presents PointABM, a method for point cloud
analysis that integrates bidirectional Mamba and Transformer.
Specifically, PointABM maintains the near-linear complex-
ity of Mamba while enhancing its capability to understand
point cloud information through the self-attention mechanism
of the Transformer. Through experimentation and validation,
PointABM demonstrates satisfactory performance, achieving
significant improvements with a modest increase in the number
of parameters.
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