
Citation: Li, J.; Jian, Y.; Xiong, Y. Text

Classification Model Based on Graph

Attention Networks and Adversarial

Training. Appl. Sci. 2024, 14, 4906.

https://doi.org/10.3390/

app14114906

Academic Editor: Valentino Santucci

Received: 22 May 2024

Revised: 31 May 2024

Accepted: 3 June 2024

Published: 5 June 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Text Classification Model Based on Graph Attention Networks
and Adversarial Training
Jing Li, Yumei Jian * and Yujie Xiong

School of Electronic and Electrical Engineering, Shanghai University of Engineering Science,
Shanghai 201620, China; 18773372067@163.com (J.L.); xiong@sues.edu.cn (Y.X.)
* Correspondence: jianyumei0628@126.com

Featured Application: Public Opinion Analysis.

Abstract: Text information on the internet often has a strong sense of immediacy, constantly reflecting
societal dynamics and evolving events. This is especially crucial in the field of news text, where
the classification and analysis of these immediate and varied text data become essential. Existing
text classification models frequently struggle to effectively represent the semantic and local feature
information of texts, limiting their effectiveness. The primary challenge lies in improving the repre-
sentation of both semantic and local feature information in text classification models, which is critical
for capturing the nuanced meanings in rapidly evolving news texts. This paper proposes a deep
learning-driven framework designed to enhance the effectiveness of text classification models. The
method incorporates noise perturbation during training for adversarial training, thereby enhancing
the model’s generalization ability on original samples and increasing its robustness. A graph attention
network is employed to extract the contextual semantic information of vocabulary from sequential
texts. This information is then combined with extracted sentence feature information to enrich the
feature representation of the sequence. An attention mechanism is also introduced to extract more
critical feature information from the text, thereby deepening the understanding of textual semantic
information. Experimental results demonstrate that this method successfully integrates the boundary
and semantic information of vocabulary into the classification task. The approach comprehensively
and deeply mines the semantic features of the text, leading to improved classification performance.

Keywords: Chinese short text classification; graph attention networks; attention mechanism; adversarial
training; feature fusion

1. Introduction

With the rapid development of technology and the widespread adoption of the inter-
net, people are increasingly active on social networking platforms. This shift has resulted
in an abundance of news data [1], which often exhibit strong timeliness and contain po-
tential economic benefits. For instance, e-commerce companies engage in opinion mining
and sentiment analysis of user reviews to discern genuine customer needs and promptly
refine their products. Such time-sensitive textual data can provide significant value to
businesses, thereby making news text classification a popular area of research. Text classifi-
cation approaches can be primarily divided into two major categories: traditional machine
learning methods and deep learning-based methods. Compared to traditional machine
learning algorithms, deep learning methods exhibit significantly enhanced expressive ca-
pabilities. Currently, the integration of deep learning with text classification has achieved
substantial progress.

Traditional machine learning classification models primarily rely on feature engineer-
ing, including techniques such as the bag-of-words model [2] and n-grams. Representative
algorithms in traditional machine learning include Naive Bayesian (NB) [3], Support Vector
Machine (SVM) [4], and Maximum Entropy models [5].

Appl. Sci. 2024, 14, 4906. https://doi.org/10.3390/app14114906 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app14114906
https://doi.org/10.3390/app14114906
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app14114906
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app14114906?type=check_update&version=2

Appl. Sci. 2024, 14, 4906 2 of 17

Deep learning-based text classification models are capable of automatically extracting
features and performing end-to-end learning, as well as capturing the underlying semantic
information of texts. Mikolov et al. [6] introduced the Word2Vec model, which represents
words as low-dimensional, dense vectors and uses the distances between these vectors
to measure word similarity, thus capturing semantic information inherent to the words
themselves. Kim et al. [7] proposed the TextCNN model for text classification, utilizing
Word2Vec pre-trained word embeddings. This model has achieved favorable results in
text classification tasks, although it falls short in representing local textual information and
contextual relationships. Liu et al. [8] developed a Recurrent Neural Network (RNN) for
text classification that is capable of capturing historical information in text sequences and
effectively handling contextual data, thus aiding in the extraction of deeper textual features.
However, RNNs tend to lose information when processing long texts. Yang et al. [9] pro-
posed two types of attention-enhanced Bi-directional Long-Short Term Memory networks
(Bi-LSTM) to improve classification performance, achieving notable results across multiple
text classification tasks. Bahdanau et al. [10] introduced the attention mechanism into RNN
models to address alignment challenges in sequence-to-sequence models and the poor per-
formance with long texts. This mechanism [11] allows the model to handle varying input
sizes and focus on the most relevant parts of the input, proving highly effective in tasks
such as machine reading and learning sentence representations. The attention mechanism
enhances the representation of weights in the feature learning process, clearly indicating
the significance of each word in classification predictions, and has thus garnered extensive
attention in the academic community. For example, Gu et al. [12] integrated the attention
mechanism into a hierarchical multi-channel structure model to extract more significant
subjective information from texts. Li et al. [13] proposed an end-to-end adversarial memory
network that automatically captures keywords and further introduced the Hierarchical
Attention Transfer Network (HATN), which enables the differentiation between core and
non-core feature localization.

In recent years, Graph Neural Networks (GNNs) have also demonstrated commend-
able performance in text classification tasks. Kipf et al. [14] introduced the Graph Convo-
lutional Network (GCN), which employs a semi-supervised approach to learn structural
features within graphs and has achieved favorable results in node classification tasks. Yao
et al. [15] developed the textGCN model, adapting the graph convolutional network for
text classification by constructing texts as heterogeneous graphs, where nodes consist of
words and documents, and edges are weighted by term frequency-inverse document fre-
quency (TF-IDF) between documents and words, as well as pointwise mutual information
between words, transforming the text classification task into a node classification challenge.
Petar et al. [16] proposed the graph attention network (GAT), which utilizes an attention
mechanism. This network employs masked self-attention layers to assign different weights
to adjacent nodes, enhancing the model’s ability to focus on more relevant features in
the graph structure, thereby improving performance in tasks such as node classification
within text-based applications. Liu et al. [17] propose a Deep Attention Diffusion Graph
Neural Network (DADGNN) model that addresses limitations in existing GNN-based
text classification methods, such as interaction difficulties between distant words and
over-smoothing issues in deep graph layers. Lin et al. [18] introduces heterogeneous graph
attention networks (HGATs) for semi-supervised short text classification. The model effec-
tively incorporates different types of nodes and connections, which is particularly useful
in scenarios with limited labeled data. Ai et al. [19] introduce a minimum-margin GAT
designed to enrich feature information for short text classification, showing significant
improvements over existing models like HGAT and STGCN. Li et al. [20] propose a graphic
attention network text classification model that integrates label information, with a focus
on integrating label semantic information into GATs for text classification, and enhancing
the correlation between text and labels through attention mechanisms. Wang et al. [21]
proposed using graph learning to fuse contextual information for text classification, which
optimized the fusion of text graphs and contextual information to achieve better docu-

Appl. Sci. 2024, 14, 4906 3 of 17

ment classification and demonstrated the effective integration of word interaction and
graph learning.

Previous studies have acknowledged the significance of key vocabulary in sentence
classification; however, existing models have not fully utilized the boundary information
of characters and the semantic information of words. To further enhance the performance
of text classification, this paper employs a graph attention network (GAT) that effectively
integrates lexical knowledge. The contributions of this work are outlined as follows:

1. We utilize three distinct graph attention networks (GATs) to extract features from the
contextual vocabulary of input text sequences. By concatenating these features with
the original input text sequences, we achieve a superior representation of the text.

2. During the model training process, we introduce noise perturbations for adversarial
training. Experimental results indicate that the incorporation of noise perturbations en-
hances the model’s generalization ability on original samples and improves robustness.

3. We employ a multi-head attention mechanism, wherein the weight matrices assign
higher numerical values to key information. The experiments demonstrate that this
approach can further enhance classification accuracy.

The rest of this paper is organized as follows: Section 2 presents our network frame-
work. Section 3 provides the experimental results, followed by an analysis of these results.
Section 4 concludes the paper.

2. Materials and Methods
2.1. Model Framework

The framework of the text classification model based on graph attention networks
and adversarial training is illustrated in Figure 1. The model consists of four components:
the encoding layer, the graph attention layer, the fusion layer, and the attention layer. In
the encoding layer, text is vectorized and perturbed with adversarial training to construct
adversarial samples. TextCNN is used for feature extraction from the text, after which
character embedding matrices and word embedding matrices are concatenated and fed
into the graph attention network layer to capture contextual vocabulary information. The
fusion layer integrates information from different network structures captured in the text
sequences. An attention mechanism is introduced to assign varying weight values to the
global sequence. Finally, the resultant feature representation is classified using a softmax
function to determine the category with the highest probability label.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 4 of 18

Figure 1. The overall architecture of our method.

2.1.1. Subsection Encoding Layer
In this paper, the model vectorizes text through a word embedding layer, generating

input character vectors and input word vectors. During model training, an adversarial
training method is incorporated, specifically the Fast Gradient Method (FGM) proposed
by Goodfellow et al. [22]. The Fast Gradient Method (FGM) was selected for our adversar-
ial training due to its efficiency and effectiveness in generating adversarial examples. FGM
is computationally less intensive compared to other methods such as Projected Gradient
Descent (PGD) or Carlini and Wagner (C&W) attacks, allowing for faster training times
without significantly compromising robustness. Additionally, FGM’s simplicity and
strong performance in improving model generalization and resilience against adversarial
attacks make it a preferred choice. By perturbing the input data with the gradient of the
loss function, FGM effectively exposes the model to a variety of adversarial scenarios, en-
hancing its ability to generalize to unseen examples. The standard format of adversarial
training is as follows: 𝑚𝑖𝑛ఏ  𝔼ሺ௫,௬ሻ∼𝒟 ቂ𝑚𝑎𝑥௱௫∈ஐ 𝐿ሺ𝑥 + Δ𝑥,𝑦;𝜃ሻቃ, (1)

In the formalism, 𝒟 represents the training dataset, 𝑥 denotes the input, 𝑦 is the
label, 𝜃 is the model parameters, and  𝐿(𝑥,𝑦;𝜃) is the loss for a single sample. Δ𝑥 is the
adversarial perturbation, and Ω is the space of perturbations. A common constraint is
‖Δ𝑥‖≤ϵ, where ϵ is a constant. For each sample, an adversarial example 𝑥 + Δ𝑥 is con-
structed, and the pair (𝑥 + Δ𝑥,𝑦) is used to minimize the loss and update the parameters
θ via gradient descent. The adversarial perturbation Δ𝑥 used is as follows: Δ𝑥 = 𝜖∇௫𝐿(𝑥,𝑦;𝜃), (2)

For ∇௫𝐿(𝑥,𝑦;𝜃), standardize the following:

Δ𝑥 = 𝜖 ∇ೣ௅(௫,௬;ఏ)∥∥∇ೣ௅(௫,௬;ఏ)∥∥, (3)

In our model, TextCNN is employed to extract features from the input text. TextCNN
utilizes three convolutional layers with kernel sizes of three, five, and seven, respectively.
Each convolutional layer considers a domain of the same size as its kernel, allowing the

Input Text

Vocabulary

人

民

网

式

成

立

了

人民

人民网

成立

正式成立

.

.

.

.

.

.

.

.

.

.

.

.

Add
noise

TextCNN .
.
.

.

.

.

Word-Character
Containing

Graph Network

Word-Character
Transition Graph

Network

Word-Character
Lattice Graph

Network

Feature
fusion

.

.

.
Weight
matrix

OutputSoftmax

Adversarial
training

Encoding layer Graph attention layer Fusion layer Attention mechanism layer

Figure 1. The overall architecture of our method.

Appl. Sci. 2024, 14, 4906 4 of 17

2.1.1. Subsection Encoding Layer

In this paper, the model vectorizes text through a word embedding layer, generating
input character vectors and input word vectors. During model training, an adversarial
training method is incorporated, specifically the Fast Gradient Method (FGM) proposed by
Goodfellow et al. [22]. The Fast Gradient Method (FGM) was selected for our adversarial
training due to its efficiency and effectiveness in generating adversarial examples. FGM
is computationally less intensive compared to other methods such as Projected Gradient
Descent (PGD) or Carlini and Wagner (C&W) attacks, allowing for faster training times
without significantly compromising robustness. Additionally, FGM’s simplicity and strong
performance in improving model generalization and resilience against adversarial attacks
make it a preferred choice. By perturbing the input data with the gradient of the loss
function, FGM effectively exposes the model to a variety of adversarial scenarios, enhancing
its ability to generalize to unseen examples. The standard format of adversarial training is
as follows:

min
θ

E(x,y)∼D

[
max
∆x∈Ω

L(x + ∆x, y; θ)

]
, (1)

In the formalism, D represents the training dataset, x denotes the input, y is the label, θ
is the model parameters, and L(x, y; θ) is the loss for a single sample. ∆x is the adversarial
perturbation, and Ω is the space of perturbations. A common constraint is ∥∆x∥≤ϵ, where
ϵ is a constant. For each sample, an adversarial example x + ∆x is constructed, and the pair
(x + ∆x, y) is used to minimize the loss and update the parameters θ via gradient descent.
The adversarial perturbation ∆x used is as follows:

∆x = ϵ∇xL(x, y; θ), (2)

For ∇xL(x, y; θ), standardize the following:

∆x = ϵ
∇xL(x, y; θ)

∥ ∇xL(x, y; θ) ∥ , (3)

In our model, TextCNN is employed to extract features from the input text. TextCNN
utilizes three convolutional layers with kernel sizes of three, five, and seven, respectively.
Each convolutional layer considers a domain of the same size as its kernel, allowing the
output to perceive a broader dimension of the input. The model’s input is a sentence along
with all the vocabulary of the contiguous sub-sequences matching the current sentence. We
represent the input sentence as s = {c1, c2, . . . , cn}, where ci denotes the i-th character, and
the vocabulary matched to the sentence is represented as l = {l1, l2, . . . , lm}. Each character
ci is represented by a vector, denoted as xi, obtained by looking up the pre-trained character
embedding matrix, where ec is a lookup table for character embeddings.

xi = ec(ci) (4)

By employing TextCNN on the sequence {x1, x2, . . . , xn}, we extract features, resulting
in a sentence representation H = {h1, h2, . . . , hn}, where each hi is a feature vector corre-
sponding to the i-th position in the input sequence. To represent the semantic information
of characters, we retrieve word embeddings from a pre-trained word embedding matrix.
Each vocabulary item li is represented as a semantic vector, denoted by wvi, where ew

is a lookup table for word embeddings. This representation facilitates a richer semantic
understanding of the text, integrating both character-level and word-level information.

wvi = ew(li) (5)

The sentence representation matrix H and the word embedding matrix wvi are con-
catenated to form the output of the encoding layer. This combined matrix is denoted as
Node f , serving as a comprehensive feature set that captures both the contextual cues from

Appl. Sci. 2024, 14, 4906 5 of 17

the sentence and the semantic attributes of the individual words. This concatenated matrix
provides a robust foundation for subsequent layers to perform more sophisticated analyses
and classifications.

Node f = [h1, h2, . . . , hn, wv1, wv2, . . . , wvm] (6)

2.1.2. Graph Attention Layer

To integrate information from self-matching vocabulary and the immediate contextual
vocabulary, this paper employs three graph attention network layers to structure the model.
These layers are as follows:

1. Word–Character Containing Graph Network: This network is designed to aid charac-
ters in acquiring boundary information and semantic information from self-matching
vocabulary. It establishes connections between characters and their directly associated
words, enriching the characters with deeper lexical insights.

2. Word–Character Transition Graph Network: This network captures the semantic
information of the nearest contextual vocabulary. It transitions between characters
and words that form contextual relationships, helping to understand the flow and
connection of ideas within the text.

3. Word–Character Lattice Graph Network: Inspired by Zhang Yue’s [23] use of a lattice
structure in LSTM models to integrate vocabulary knowledge, this paper extracts the
lattice structure to form the third attention network layer. This structure allows for
a more flexible and interconnected approach to handling complex character–word
relationships, providing a mesh-like framework that captures broader lexical fields.

Each of these network layers shares the same set of vertices, which consist of characters
from the sentence and their matching vocabulary. However, the sets of edges are entirely
distinct, facilitating specialized processing by each layer.

To represent the sets of edges, adjacency matrices are introduced. An element in
an adjacency matrix indicates whether the vertices in the graph are adjacent; ‘1’ denotes
adjacency, while a ‘0’ denotes non-adjacency. This matrix-based approach allows for
efficient representation and processing of graph data, facilitating effective attention-based
learning across the different layers.

In the Word–Character Containing Graph Network (WCCGN), characters within a
sentence can capture the boundary and semantic information of self-matching vocabulary.
As demonstrated in Figure 2, if a vocabulary item m contains a character n, then the
corresponding entry in the adjacency matrix C for the WCCGN (m, n) is assigned a value
of 1. This indicates a direct relationship where the vocabulary item encompasses the
character, thus linking characters to the words they contribute to forming. This connection
facilitates the effective capture of both boundary and deeper semantic layers of information,
enhancing the text’s representational richness in the network.

The Word–Character Transition Graph Network (WCTGN) facilitates the capture
of semantic information from the nearest contextual vocabulary for each character. As
illustrated in Figure 3, if a vocabulary item m or a character n matches the immediately
preceding or succeeding subsequence of a character j, the corresponding entry in the
adjacency matrix T for the WCTGN (m, j) or (n, j) is assigned a value of 1. This establishes
a direct semantic link between characters and their adjacent vocabulary items, reflecting
immediate linguistic contexts.

Furthermore, if a vocabulary item m is contextually related to another vocabulary
item k as part of the preceding or succeeding context, the adjacency matrix T entry (m,
k) is also assigned a value of 1. This linkage captures broader contextual relationships,
ensuring that the semantic flow between closely related vocabulary items within the text is
maintained and effectively represented in the model. This structure enhances the model’s
ability to comprehend and integrate contextual nuances, significantly improving its text
classification capabilities.

Appl. Sci. 2024, 14, 4906 6 of 17

Appl. Sci. 2024, 14, x FOR PEER REVIEW 6 of 18

As demonstrated in Figure 2, if a vocabulary item m contains a character n, then the cor-
responding entry in the adjacency matrix C for the WCCGN (m, n) is assigned a value of
1. This indicates a direct relationship where the vocabulary item encompasses the charac-
ter, thus linking characters to the words they contribute to forming. This connection facil-
itates the effective capture of both boundary and deeper semantic layers of information,
enhancing the text’s representational richness in the network.

人 民 研 院网 究 正 式 成 立 了

人民 研究 正式 成立

人民网 研究院 正式成立

Character

Word

Word

Figure 2. Word–Character Containing Graph Network.

The Word–Character Transition Graph Network (WCTGN) facilitates the capture of
semantic information from the nearest contextual vocabulary for each character. As illus-
trated in Figure 3, if a vocabulary item 𝑚 or a character 𝑛 matches the immediately pre-
ceding or succeeding subsequence of a character 𝑗, the corresponding entry in the adja-
cency matrix T for the WCTGN (m, j) or (n, j) is assigned a value of 1. This establishes a
direct semantic link between characters and their adjacent vocabulary items, reflecting
immediate linguistic contexts.

Furthermore, if a vocabulary item 𝑚 is contextually related to another vocabulary
item k as part of the preceding or succeeding context, the adjacency matrix T entry (m,
k) is also assigned a value of 1. This linkage captures broader contextual relationships,
ensuring that the semantic flow between closely related vocabulary items within the text
is maintained and effectively represented in the model. This structure enhances the
model’s ability to comprehend and integrate contextual nuances, significantly improving
its text classification capabilities.

Figure 2. Word–Character Containing Graph Network.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 18

人 民 研 院网 究 正 式 成 立 了

人民 研究 正式 成立

人民网 研究院 正式成立

Character

Word

Word

Figure 3. Word–Character Transition Graph Network.

The Word–Character Lattice Graph Network (WCLGN) is designed to implicitly cap-
ture the semantic information of the nearest contextual vocabulary and some self-match-
ing vocabulary terms. As shown in Figure 4, if a character n is immediately preceding or
succeeding another character j, the corresponding entry in the adjacency matrix L for the
WCLGN (n, j) is assigned a value of 1. This assignment explicitly connects characters that
are adjacent within the text, facilitating the capture of local contextual information.

Additionally, if a character n matches the starting or ending character of a vocabu-
lary item m, the adjacency matrix L entry (n, m) is also assigned a value of 1. This linkage
captures not just the adjacency but also the boundary alignment between characters and
vocabulary terms. By mapping these relationships, the WCLGN can effectively integrate
and represent both the direct context and the boundary information of vocabulary items,
enhancing the model’s capability to understand and process textual data comprehen-
sively. This dual capture mechanism ensures that the text classification model can lever-
age both local and broader semantic cues efficiently.

人 民 研 院网 究 正 式 成 立 了

人民 研究 正式 成立

人民网 研究院 正式成立

Character

Word

Word

Figure 4. Word–Character Lattice Graph Network.

Figure 3. Word–Character Transition Graph Network.

The Word–Character Lattice Graph Network (WCLGN) is designed to implicitly
capture the semantic information of the nearest contextual vocabulary and some self-
matching vocabulary terms. As shown in Figure 4, if a character n is immediately preceding
or succeeding another character j, the corresponding entry in the adjacency matrix L for the
WCLGN (n, j) is assigned a value of 1. This assignment explicitly connects characters that
are adjacent within the text, facilitating the capture of local contextual information.

Additionally, if a character n matches the starting or ending character of a vocabulary
item m, the adjacency matrix L entry (n, m) is also assigned a value of 1. This linkage
captures not just the adjacency but also the boundary alignment between characters and
vocabulary terms. By mapping these relationships, the WCLGN can effectively integrate
and represent both the direct context and the boundary information of vocabulary items,
enhancing the model’s capability to understand and process textual data comprehensively.
This dual capture mechanism ensures that the text classification model can leverage both
local and broader semantic cues efficiently.

Appl. Sci. 2024, 14, 4906 7 of 17

Appl. Sci. 2024, 14, x FOR PEER REVIEW 7 of 18

人 民 研 院网 究 正 式 成 立 了

人民 研究 正式 成立

人民网 研究院 正式成立

Character

Word

Word

Figure 3. Word–Character Transition Graph Network.

The Word–Character Lattice Graph Network (WCLGN) is designed to implicitly cap-
ture the semantic information of the nearest contextual vocabulary and some self-match-
ing vocabulary terms. As shown in Figure 4, if a character n is immediately preceding or
succeeding another character j, the corresponding entry in the adjacency matrix L for the
WCLGN (n, j) is assigned a value of 1. This assignment explicitly connects characters that
are adjacent within the text, facilitating the capture of local contextual information.

Additionally, if a character n matches the starting or ending character of a vocabu-
lary item m, the adjacency matrix L entry (n, m) is also assigned a value of 1. This linkage
captures not just the adjacency but also the boundary alignment between characters and
vocabulary terms. By mapping these relationships, the WCLGN can effectively integrate
and represent both the direct context and the boundary information of vocabulary items,
enhancing the model’s capability to understand and process textual data comprehen-
sively. This dual capture mechanism ensures that the text classification model can lever-
age both local and broader semantic cues efficiently.

人 民 研 院网 究 正 式 成 立 了

人民 研究 正式 成立

人民网 研究院 正式成立

Character

Word

Word

Figure 4. Word–Character Lattice Graph Network. Figure 4. Word–Character Lattice Graph Network.

In the construction of the model using three graph attention network layers, each
j-th layer of a graph attention network (GAT) receives an input set of node features
NFj = {f1, f2, . . . , fN} along with an adjacency matrix A ∈ RN×N , where N denotes the
number of nodes and F represents the dimensionality of the features at the j-th layer. The
output of the j-th layer is a new set of node features NF(j+1) =

{
f′1, f′2, . . . , f′N

}
.

A GAT employs K independent attention mechanisms, each of which computes the
importance of node i’s features to node j’s features. The attention mechanism in GAT is
used to weigh the influence of each node’s features on each other based on the structure
specified by the adjacency matrix A. The computation of the new feature for each node
involves aggregating features from its neighborhood, weighted by attention scores. The
attention scores are computed as follows:

1. Linear Transformation: Each node feature f j is first transformed by a weight
matrix W, which is commonly shared across the network but specific to each attention
head. This step projects the features into a space where attention coefficients can be more
effectively learned:

f ′i =∥K
k=1 σ

(
∑ j∈Ni αk

ijW
k f j

)
, (7)

2. Attention Coefficient Calculation: The attention coefficients that indicate the impor-
tance of node j’s features for node i are calculated using a pairwise attention mechanism on
the transformed features. Typically, this involves a nonlinear transformation such as the
softmax function applied to a linear combination of features:

αk
ij =

exp
(

LeakyReLU
(

aT
[
Wk fi ∥ WK f j

]))
Σk∈Ni

exp
(
LeakyReLU

(
aT

[
Wk fi ∥ WK fk

])) , (8)

where a is a weight vector, ∥ denotes concatenation, and Ni includes node i and its neighbors
as specified by A.

3. Feature Update: The new features for each node are then computed as a weighted
sum of the transformed features of the neighboring nodes, scaled by the computed atten-
tion coefficients:

f f inal
i = σ

(
1
K ∑K

k=1 ∑ j∈Ni αk
ijW

k f j

)
, (9)

where σ is an activation function.

Appl. Sci. 2024, 14, 4906 8 of 17

This framework enables each node to dynamically adjust the influence of its neigh-
boring nodes’ features based on the overall structure of the graph, thereby effectively
capturing both local and global structural information in the feature updates. This process
is repeated for K attention heads, and the results can be averaged, depending on the specific
architecture, to form the final output features for each node.

To construct models for three entirely distinct character–word graphs, this paper
utilizes three independent graph attention networks (GATs), designated as GAT_1, GAT_2,
and GAT_3. Since all three GATs share the same set of vertices, the input node features
for each GAT are provided by the matrix Node f . This shared matrix initializes the node
features across all networks. The formula is as follows:

G1 = GAT1

(
Node f , AC

)
, (10)

G2 = GAT2

(
Node f , AT

)
, (11)

G2 = GAT2

(
Node f , AL

)
, (12)

Among them, Gk ∈ RF′×(n+m), k ∈ {1, 2, 3}, we keep the first n columns of these matri-
ces and discard the last m columns because only these characters represent decoding labels.

Qk = Gk[: 0 : n], k ∈ {1, 2, 3}, (13)

2.1.3. Adjacency Matrix Processing

In the context of graph neural networks used for text classification, dealing with
common issues like overfitting and oversmoothing is crucial, especially when handling
complex data such as text. Overfitting occurs when a model performs excellently on
training data but poorly on unseen test data, often due to insufficient training data or
excessive model complexity, leading the model to learn the training data features too
specifically at the expense of generalization. Oversmoothing, on the other hand, happens
when an increase in network layers causes node representations to become overly similar,
resulting in information loss and gradient vanishing.

To address these challenges, the Dropedge technique is introduced, which involves
randomly removing some non-zero elements in the adjacency matrices and setting them
to zero. This random alteration helps preserve original features while enhancing data
diversity, which aids in reducing model complexity and preventing overfitting.

Furthermore, Dropedge can slow down the convergence of the network, which helps
mitigate the oversmoothing issue. By reducing direct connections between nodes, the
model can more effectively maintain crucial information from the input data and prevent
homogenization of node representations, thereby enhancing the model’s generalizability.
Thus, Dropedge not only reduces computational complexity but also allows for deeper
network layers, enabling the extraction of more profound features and enhancing the
expressiveness of the network. This, in turn, improves the model’s accuracy and robustness.

Figure 5 illustrates the process of applying Dropedge to the adjacency matrices, demon-
strating how this technique modifies the network structure to improve model performance
and stability in text classification tasks.

Appl. Sci. 2024, 14, x FOR PEER REVIEW 9 of 18

2.1.3. Adjacency Matrix Processing
In the context of graph neural networks used for text classification, dealing with com-

mon issues like overfitting and oversmoothing is crucial, especially when handling com-
plex data such as text. Overfitting occurs when a model performs excellently on training
data but poorly on unseen test data, often due to insufficient training data or excessive
model complexity, leading the model to learn the training data features too specifically at
the expense of generalization. Oversmoothing, on the other hand, happens when an in-
crease in network layers causes node representations to become overly similar, resulting
in information loss and gradient vanishing.

To address these challenges, the Dropedge technique is introduced, which involves
randomly removing some non-zero elements in the adjacency matrices and setting them
to zero. This random alteration helps preserve original features while enhancing data di-
versity, which aids in reducing model complexity and preventing overfitting.

Furthermore, Dropedge can slow down the convergence of the network, which helps
mitigate the oversmoothing issue. By reducing direct connections between nodes, the model
can more effectively maintain crucial information from the input data and prevent homog-
enization of node representations, thereby enhancing the model’s generalizability. Thus,
Dropedge not only reduces computational complexity but also allows for deeper network
layers, enabling the extraction of more profound features and enhancing the expressiveness
of the network. This, in turn, improves the model’s accuracy and robustness.

Figure 5 illustrates the process of applying Dropedge to the adjacency matrices,
demonstrating how this technique modifies the network structure to improve model per-
formance and stability in text classification tasks.

Figure 5. Perform Dropedge.

2.1.4. Fusion Layer
Local and global sequential information is captured through various network struc-

tures, integrating the sequential information extracted by TextCNN with the lexical infor-
mation captured by three graph attention network layers. The input consists of the output
H from TextCNN and the outputs 𝑄𝒊 from the three graph attention layers, i ∈ {1, 2, 3}.
The formula is as follows: 𝑅 = 𝑊ଵ𝐻 + 𝑊ଶ𝑄ଵ + 𝑊ଷ𝑄ଶ + 𝑊ସ𝑄ଷ, (14)

In the fusion layer, W represents a trainable matrix. By applying this layer, we obtain
a new matrix R, which serves as a new representation of the sentence. This representation
encompasses semantic information from self-matching vocabulary and the nearest con-
textual vocabulary.

2.1.5. Attention Mechanism Layer
The essence of the attention mechanism is essentially a distribution of weight values,

allocating larger weights to key parts. Even with longer texts, this mechanism enables the
capture of essential elements, thus preserving important information and effectively

Figure 5. Perform Dropedge.

Appl. Sci. 2024, 14, 4906 9 of 17

2.1.4. Fusion Layer

Local and global sequential information is captured through various network struc-
tures, integrating the sequential information extracted by TextCNN with the lexical infor-
mation captured by three graph attention network layers. The input consists of the output
H from TextCNN and the outputs Qi from the three graph attention layers, i ∈ {1, 2, 3}. The
formula is as follows:

R = W1H + W2Q1 + W3Q2 + W4Q3, (14)

In the fusion layer, W represents a trainable matrix. By applying this layer, we obtain
a new matrix R, which serves as a new representation of the sentence. This representa-
tion encompasses semantic information from self-matching vocabulary and the nearest
contextual vocabulary.

2.1.5. Attention Mechanism Layer

The essence of the attention mechanism is essentially a distribution of weight values,
allocating larger weights to key parts. Even with longer texts, this mechanism enables
the capture of essential elements, thus preserving important information and effectively
enhancing classification performance. In this paper, the attention mechanism is employed
to obtain the weight values of important vocabulary information within the input text. The
formula is as follows:

Attention = tanh(inputs) ∗ w, (15)

where inputs represents a set of multiple vectors, ∗ represents matrix multiplication, w
represents the parameter matrix to be trained, and the calculation formula for tanh is
as follows:

tanh(z) =
ez − e−z

ez + e−z , (16)

The formula for determining the importance, alpha, of each position in the final vector
is as follows: The term “mask” indicates whether padding has been applied at a particular
position, with a value of 1 indicating padding and 0 indicating no padding. The purpose of
applying the softmax function is to compute the importance weights of each position for
the final vector, ensuring that the sum of these weights equals 1.

alpha = softmax(attention − (1 − mask) × 108), (17)

2.2. Experiments
2.2.1. Data Collection and Preprocessing

We conducted experiments to validate the effectiveness of the model on four bench-
mark datasets, THUCNews, Toutiao, Weibo, SougouCS, and Autohome. The preprocessing
of all datasets is shown in Table 1.

Table 1. Datasets division.

Datasets Class Training Test Average Length

THUCNews 10 190,000 10,000 24.7
Toutiao 15 135,000 15,000 22.4
Weibo 2 89,736 10,000 57.1

SougouCS 12 28,347 6387 18.3

THUCNews: The THUCNews [24] news text dataset, provided and publicly released
by Tsinghua University, is derived from historical data filtered from Sina News RSS sub-
scriptions between 2005 and 2011. It comprises over 740,000 news documents across
14 news categories. For the purposes of this study, samples from 10 categories were se-
lected, with 20,000 entries per category. Text lengths range from 20 to 50 words. Of these,
19,000 articles per category were used for the training set, and 1000 were used for the
testing set.

Appl. Sci. 2024, 14, 4906 10 of 17

Toutiao: The Toutiao [25] dataset is a Chinese short text classification dataset sourced
from the Toutiao News app, containing a total of 382,688 news texts across 15 news cate-
gories. For this research, the data were randomly shuffled, and 150,000 texts were selected,
with 135,000 used for the training set and 15,000 used for the testing set.

Weibo: This dataset was obtained from Sina weibo [26], where each sentence is
marked as positive or negative. In this study, we randomly shuffled the data and selected
99,736 comment data. We used the Harbin Institute of Technology’s word segmentation
database for data preprocessing, with 89,736 comment data used in the training set and
10,000 comment data used in the testing set.

SougouCS: This dataset consists of Sohu [27] news titles from June to July 2012. We
choose 12 types of news for experiments, including education, entertainment, technology,
etc. This dataset consists of news statements from websites, which are relatively short
and refined. The average length of the dataset is relatively short. This study extracted
34,734 statements, of which 28,347 were used for the training set and 6387 were used for
the testing set.

This article uses the Harbin Institute of Technology’s stop word list to process the
dataset and obtain a vocabulary set. The specific information is shown in Table 1:

2.2.2. Hardware Configuration

In this paper, to verify the predictive performance of the model, both the model
and benchmark experiments were conducted on the Windows 10 system using Python
programming. The model was implemented using the PyTorch framework, and the main
parameters of the model training computing environment were a GPU card (RTX 3070)
and CUDA version 11.1. The experimental hardware configuration is outlined in Table 2
as follows:

Table 2. Experimental environment.

Parameter Value

System Windows10
Language python

GPU RTX 3070
CUDA 11.1

2.2.3. Parameter Settings

In this paper, Adam is employed as the optimizer for the model, which includes two
layers of graph attention networks (GATs). Each GAT layer utilizes five attention heads
and contains thirty units in the hidden layer. The dropout rate for the word embeddings is
set at 0.4, and the maximum sequence length is limited to 128. The batch size is configured
at 64, and the model undergoes training for a total of 50 epochs. The initial learning rate is
set at 0.001. The parameters of the network model are outlined in Table 3 as follows:

Table 3. Parameter setting of model.

Parameter Value

Batch_size 64
Learning_rate 0.001

Learning decay rate 0.01
Max_len 128

Drop_rate 0.4
Epoch 50

Optimizer Adam

2.2.4. Comparison Model

This paper introduces several baseline sentiment analysis models, as follows:

Appl. Sci. 2024, 14, 4906 11 of 17

In this paper, several text classification models are employed and assessed for
their effectiveness:

1. TextCNN [7]: This utilizes Word2Vec to generate word vectors, followed by feature
extraction through convolutional kernels of varying sizes. After passing through a
max pooling layer, classification is performed using a Softmax function.

2. TextCNN+Att: After feature extraction using convolutional kernels of different sizes,
the text passes through a weight adjustment layer that uses an attention mechanism to
adjust weight values. This layer captures the dependency relationships between words
based on the degree of influence of each word in the sequence on the text classification
task and can learn the internal structural information of the sequence text.

3. TextRNN [8]: The use of RNN can effectively process sequence information and better
extract contextual information features.

4. Transformer [28]: This comprises an encoder and decoder, using Word2Vec for convert-
ing input text into feature vectors. The self-attention mechanism effectively addresses
the problem of long-distance dependencies in classification tasks.

5. BiLSTM [8]: This generates word vectors using Word2Vec and utilizes bidirectional
LSTM layers to extract semantic information and dependencies in text, followed by
classification through a fully connected layer.

6. HANs [29]: HANs is a Chinese short text classification model that uses CNN and
BiLSTM to encode the character level and word-level features, respectively, and
concatenates two-level features for classification.

7. CNN-highway + RNN [1]: This is a Chinese text classification model based on
character-level features, where the sentence is encoded by highway-CNN and LSTM,
respectively, and two outputs are concatenated for classification.

8. TextGCN [14]: Text-GCN constructs a heterogeneous graph based on the document
and its words, and enables graph convolution networks to perform semi-supervised
text classification.

9. Text-level-GNN [30]: Text-level-GNN is a text-level graph neural network model-
based message passing mechanism, where a graph is constructed for each sentence
and the words in the sentence are viewed as nodes.

10. RAFG [31]: RAFG is a Chinese text classification model that uses BiLSTMs to encode
the Chinese radical information at character-level and word-level, respectively.

11. MACNN [32]: MACNN is a Chinese short text classification model to integrate
character-level and word-level features by sentence-level attention mechanisms.

12. CW-GAT [33]: CW-GAT is a model that utilizes graph attention networks to effec-
tively capture and integrate the interaction between character-level and word-level
representations for improved Chinese text classification.

13. TextCNN+GAT+Att+FGM (TGAF): In this model, noise perturbation is added to
the word embedding component for adversarial training. Adversarial samples are
constructed during training to enable the model to correctly identify more adversarial
examples, thereby enhancing the model’s generalizability and robustness against
adversarial attacks.

2.2.5. Evaluation Criteria

In this study, accuracy was used as an evaluation metric to assess the overall effec-
tiveness of the classification. The terms are defined as follows: TP (True Positive) denotes
correctly predicting a positive class as positive; FP (False Positive) denotes incorrectly
predicting a negative class as positive; FN (False Negative) denotes incorrectly predicting a
positive class as negative; and TN (True Negative) denotes correctly predicting a negative
class as negative.

Accuracy is defined as the ratio of correctly classified texts (TP + TN) to the total
number of texts (TP + FP + FN + TN), as shown in Equation (18):

accuracy =
TP + TN

TP + FP + FN + TN
(18)

Appl. Sci. 2024, 14, 4906 12 of 17

3. Results and Discussion
3.1. Sentiment Analysis Model Performance Evaluation

Firstly, the text sentiment analysis model proposed in this paper and the baseline
models are evaluated from a quantitative analysis standpoint, using the evaluation metrics
described in Section 2.2.5. All the models are trained for 40 epochs, and the best perfor-
mances are recorded for a benchmark comparison. The specific experimental results of
each model are shown in Table 4.

Table 4. Accuracy results of experimental algorithms.

THUCNews Toutiao Weibo SougouCS

TextCNN 0.9044 0.8530 0.9707 0.7976
TextCNN+Att 0.9129 0.8644 0.9815 0.8123

TextRNN 0.9102 0.8572 0.9736 0.8044
Transformer 0.9092 0.8661 0.9310 0.7553

BiLSTM 0.8515 0.7661 0.9767 0.7418
HANs 0.9159 0.8554 0.9647 0.8152

CNN-highway + RNN 0.8810 0.8053 0.9694 0.7117
TextGCN 0.9071 0.8713 0.8400 0.8105

Text-level-GNN 0.7995 0.8371 0.8354 0.7779
RAFG 0.8636 0.7805 0.9627 0.6795

MACNN 0.9214 0.8620 0.9650 0.8187
CW-GAT 0.9220 0.8738 0.9830 0.8262

TGAF 0.9301 0.8812 0.9874 0.8351

Clearly, the TGAF model performs better than all comparison models on several
datasets. Specifically, on the larger THUCNews and Toutiao datasets, compared to the
baseline model TextCNN, TGAF increased by 2.57 and 2.82 percentage points, respectively.
TGAF also shows excellent performance on small-volume multi-classification datasets,
such as the SougouCS dataset, which has improved by 3.75 percentage points compared
to the baseline model TextCNN and 1.67 percentage points compared to the binary Weibo
dataset, demonstrating the strong learning ability of the model.

When comparing Models 7 and 13, although CNN-highway + RNN utilizes both CNN
and RNN for character feature extraction, it performs poorly in text experiments. This is
because Chinese characters are polysemous, and the model fails to capture the word-level
meanings within the characters, leading to inaccurate interpretations of the input sentences.

When comparing Models 6 and 11, which combine word-level features, we observed
improved accuracy. This is because mixing hierarchical features enhances semantic infor-
mation in Chinese, leading to better text comprehension. However, our model, through
the use of graph attention networks (GATs), facilitates interaction between character and
word information, resulting in a better understanding of the input text representation. By
integrating the contextual semantics of the text and combining this information with the
original input, our model deepens its analysis of the intrinsic meaning of the text.

When comparing Models 8 and 12, while CW-GAT and TextGCN utilize graph net-
works for feature extraction from input text and excel in capturing local features, they fail
to fully leverage contextual information and integrate additional auxiliary features due to
their structural characteristics. This limitation affects their performance in complex text
classification tasks.

Comparing Model 1 and Model 2, TextCNN did not consider contextual features
and did not introduce any auxiliary features, resulting in insufficient ability to capture
features and poor classification performance. After adding an attention mechanism, the
TextCNN+Att model showed a certain degree of improvement in performance. This is
because the attention mechanism can enable important information in the text to receive
higher classification decisions. Compared with Model 2 and Model 13, the introduction of
a graph attention network in the model further improves the classification performance.

Appl. Sci. 2024, 14, 4906 13 of 17

Three auxiliary features are introduced in the TGA model, making the model have better
feature learning ability.

Additionally, our model introduces adversarial training to enhance performance and
robustness. This method involves introducing finely-tuned perturbations to the training
data samples to simulate potential external interferences, training the model to respond
more stably to such disturbances. This not only improves the model’s performance on the
current dataset but also significantly enhances its generalization ability when handling
novel or unseen data. The inclusion of adversarial training makes the model more robust, ef-
fectively identifying and resisting potential adversarial attacks or noise, ensuring consistent
performance in dynamic environments. Moreover, this approach further boosts the model’s
generalization capability, allowing it to perform excellently on unseen data, demonstrating
the crucial value of adversarial training in enhancing both robustness and generalization.

3.2. Ablation Experiment

To investigate the impact of the three distinct feature extraction capabilities of graph
attention networks (GATs) incorporated into the model, ablation experiments were con-
ducted using the THUCNews dataset and an automotive review corpus, as shown in
Table 5. The ablation studies were performed by systematically removing different modules
while keeping other components and parameters unchanged, to analyze their individual
contributions to performance.

Table 5. Ablation experiment.

THUCNews Toutiao Weibo SougouCS

TGAF-GAT1 0.9250 0.8779 0.9844 0.8324
TGAF-GAT2 0.9223 0.8752 0.9826 0.8291
TGAF-GAT3 0.9253 0.8786 0.9853 0.8333

TGA 0.9288 0.8791 0.9862 0.8344
TGAF 0.9301 0.8812 0.9874 0.8351

In Table 5, TGAF represents the method proposed in this paper. TGAF-GAT1 indicates
the removal of the Word–Character Containing Graph Network (GAT1); TGAF-GAT2
indicates the removal of the Word–Character Transition Graph Network (GAT2); TGAF-
GAT3 indicates the removal of the Word–Character Lattice Graph Network (GAT3); and
TGA represents the absence of adversarial training. The results show that removing any of
the graph attention networks reduces the model’s performance, underscoring the important
role that each network plays in feature extraction.

Among these, the performance drop is most significant with TGAF-GAT2, which
highlights the critical role of the Word–Character Transition Graph Network in capturing
the contextual information of vocabulary. This suggests that GAT2 is particularly effective
in uncovering hidden correlations between vocabularies, contributing significantly to the
overall ability of the model to interpret and classify text based on nuanced semantic relation-
ships. This insight underscores the value of integrating diverse graph-based approaches to
enhance the depth and accuracy of text classification models.

Figure 6 shows the number of correctly classified news articles for each category by
each model on the THUCNews dataset, displaying the test results of 1000 news texts for
each category. The results show that the TGAF model performed better in classification,
with over 950 correctly classified items in the education category. For categories similar
to sports, the adversarial training added to the model exhibits strong robustness. The
classification of other categories also demonstrated the effectiveness of the three graph
attention networks added, and there were fewer instances of misclassifying different
topic categories.

Appl. Sci. 2024, 14, 4906 14 of 17
Appl. Sci. 2024, 14, x FOR PEER REVIEW 15 of 18

Figure 6. Number of correct classifications of model.

The size of the convolutional kernel is one of the key factors affecting model perfor-
mance in text classification tasks. To further optimize model performance, this chapter
conducts experiments to fine-tune the selection of convolutional kernel sizes. The results
of the experiments are shown in Table 6. The model constructed in this chapter utilizes
three CNN layers, necessitating a thorough investigation into the impact of various com-
binations of CNN kernel sizes on model performance. The first column in Table 5 lists
different CNN size combinations; for example, (two, three, and four) indicates that the
first convolutional layer of the model uses a kernel size of two, the second layer uses a size
of three, and the third layer uses a size of four.

Table 6. Effect of convolution kernel size combination performance.

 THUCNews Toutiao Weibo SougouCS
(2, 3, 4) 0.9271 0.8785 0.9831 0.8321
(3, 4, 5) 0.9277 0.8793 0.9844 0.8326
(2, 4, 6) 0.9284 0.8798 0.9852 0.8331
(3, 5, 7) 0.9301 0.8812 0.9874 0.8351
(3, 4, 6) 0.9288 0.8803 0.9856 0.8337

The experimental results demonstrate that different combinations of convolutional
kernel sizes significantly affect model performance. For the text dataset, the optimal clas-
sification performance was achieved with a kernel size combination of (three, five, and
seven). The size of the convolutional kernels plays a crucial role in the model’s perfor-
mance; smaller kernels may reduce the model’s ability to extract features, thereby nega-
tively impacting classification performance. Conversely, increasing the size of the convo-
lutional kernels enhances the model’s feature extraction capability but also increases the

Figure 6. Number of correct classifications of model.

The size of the convolutional kernel is one of the key factors affecting model perfor-
mance in text classification tasks. To further optimize model performance, this chapter
conducts experiments to fine-tune the selection of convolutional kernel sizes. The results of
the experiments are shown in Table 6. The model constructed in this chapter utilizes three
CNN layers, necessitating a thorough investigation into the impact of various combinations
of CNN kernel sizes on model performance. The first column in Table 5 lists different CNN
size combinations; for example, (two, three, and four) indicates that the first convolutional
layer of the model uses a kernel size of two, the second layer uses a size of three, and the
third layer uses a size of four.

Table 6. Effect of convolution kernel size combination performance.

THUCNews Toutiao Weibo SougouCS

(2, 3, 4) 0.9271 0.8785 0.9831 0.8321
(3, 4, 5) 0.9277 0.8793 0.9844 0.8326
(2, 4, 6) 0.9284 0.8798 0.9852 0.8331
(3, 5, 7) 0.9301 0.8812 0.9874 0.8351
(3, 4, 6) 0.9288 0.8803 0.9856 0.8337

The experimental results demonstrate that different combinations of convolutional
kernel sizes significantly affect model performance. For the text dataset, the optimal
classification performance was achieved with a kernel size combination of (three, five, and
seven). The size of the convolutional kernels plays a crucial role in the model’s performance;
smaller kernels may reduce the model’s ability to extract features, thereby negatively
impacting classification performance. Conversely, increasing the size of the convolutional
kernels enhances the model’s feature extraction capability but also increases the number of
model parameters, adding to the model’s complexity and potentially adversely affecting
classification results.

Appl. Sci. 2024, 14, 4906 15 of 17

In choosing the size of convolutional kernels, it is essential to balance the feature
extraction capability and the complexity of the model to achieve the best text classification
results. This process involves carefully considering the depth and breadth of feature
detection required for specific types of text content while managing the computational load
and the risk of overfitting.

4. Conclusions

This paper combines the advantages of graph attention networks (GATs) and adver-
sarial training to propose a text classification model that employs TextCNN for extracting
sequential text information and GATs for capturing the semantic information of textual
context, leading to a richer integration of information. The model incorporates an attention
mechanism to allocate varying weights to the global sequence representation. Experimental
results demonstrate that the proposed text classification model achieves commendable re-
sults on both multi-class and binary classification datasets. With the inclusion of additional
auxiliary features, the model can extract more features beneficial for classification, thereby
enhancing its representational power. This study can help businesses understand consumer
emotions and market trends, support decision-making, and optimize market strategies by
categorizing social media comments, customer feedback, and product reviews.

There are still some limitations to the model in this article: the model is specifically
developed for Chinese and may not be applicable to other languages, especially those with
different syntactic structures and word orders, such as Japanese, Korean, Arabic, etc. The
model needs to consider complex character combinations and contextual relationships
when processing Chinese text, resulting in high computational complexity and resource
consumption. There are many polysemous and ambiguous words in Chinese, which
poses additional challenges to text classification. The model may require more contextual
information to accurately classify.

One of the future research directions is to focus on multimodal analysis, which com-
bines multiple data sources, such as images and videos, for comprehensive analysis. The
combination of text, images, and videos can provide richer information sources and im-
prove the accuracy of classification models. For example, in news classification, textual
content can be analyzed together with relevant images and videos to obtain a more com-
prehensive understanding. Multimodal analysis faces challenges such as data alignment,
feature extraction, and computational complexity. Future research needs to develop more ef-
ficient algorithms and models to address these challenges and fully leverage the advantages
of multimodal data.

Author Contributions: Conceptualization, J.L.; Software, J.L.; Data curation, J.L.; Writing—original
draft, J.L. and Y.J.; Writing—review and editing, J.L and Y.X. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Chung, T.; Xu, B.; Liu, Y.; Ouyang, C.; Li, S.; Luo, L. Empirical study on character level neural network classifier for Chinese text.

Eng. Appl. Artif. Intell. 2019, 80, 1–7. [CrossRef]
2. Harris, Z.S. Distributional Structure. Word 2015, 10, 2–162.
3. McCallum, A.; Nigam, K. A Comparison of Event Models for Naive Bayes Text Classification. In Proceedings of the AAAI-98

Workshop on Learning for Text Categorization, Madison, WI, USA, 26–27 July 1998; Volume 752, pp. 41–48.

https://doi.org/10.1016/j.engappai.2019.01.009

Appl. Sci. 2024, 14, 4906 16 of 17

4. Joachims, T. Text Categorization with Support Vector Machines: Learning with Many Relevant Features. In Proceedings of the
10th European Conference on Machine Learning, Chemnitz, Germany, 21–23 April 1998; Springer: Berlin/Heidelberg, Germany,
1998; pp. 137–142.

5. Xie, X.; Ge, S.; Hu, F.; Xie, M.; Jiang, N. An Improved Algorithm for Sentiment Analysis Based on Maximum Entropy. Soft Comput.
2019, 23, 599–611. [CrossRef]

6. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed Representations of Words and Phrases and their
Compositionality. Adv. Neural Inf. Process. Syst. 2013, 26.

7. Kim, Y. Convolutional Neural Networks for Sentence Classification. In Proceedings of the 2014 Conference on Empirical Methods
in Natural Language Processing, Doha, Qatar, 25–29 October 2014; pp. 1746–1751.

8. Liu, P.; Qiu, X.; Huang, X. Recurrent Neural Network for Text Classification with Multi-Task Learning. arXiv 2016,
arXiv:1605.05101.

9. Yang, M.; Tu, W.; Wang, J.; Xu, F.; Chen, X. Attention Based LSTM for Target Dependent Sentiment Classification. In Proceedings
of the 31st AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; AAAI: Menlo Park, CA, USA,
2017; pp. 5013–5014.

10. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv 2014, arXiv:1409.0473.
11. Raffel, C.; Ellis, D.P.W. Feed-Forward Networks with Attention can Solve Some Long-Term Memory Problems. arXiv 2015,

arXiv:1512.08756.
12. Gu, Y.; Yang, K.; Fu, S.; Chen, S.; Li, X.; Marsic, I. Multimodal Affective Analysis Using Hierarchical Attention Strategy with

Word-Level Alignment. In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, Melbourne,
Australia, 15–20 July 2018.

13. Li, Z.; Zhang, Y.; Wei, Y.; Wu, Y.; Yang, Q. End-to-End Adversarial Memory Network for Cross-Domain Sentiment Classification.
In Proceedings of the 26th International Joint Conference on Artificial Intelligence, Melbourne, Australia, 19–25 August 2017;
pp. 2023–2030.

14. Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. arXiv 2016, arXiv:1609.02907.
15. Yao, L.; Mao, C.S.; Luo, Y. Graph Convolutional Networks for Text Classification. In Proceedings of the Thirty-First Innovative

Applications of Artificial Intelligence Conference, Pasadena, CA, USA, 14–16 July 2009; AAAI Press: Menlo Park, CA, USA, 2019;
pp. 7370–7377.

16. Velickovic, P.; Cucurull, G.; Casanova, A.; Romero, A.; Lio, P.; Bengio, Y. Graph attention networks. arXiv 2017, arXiv:1710.10903.
17. Liu, Y.; Guan, R.; Giunchiglia, F.; Liang, Y.; Feng, X. Deep Attention Diffusion Graph Neural Networks for Text Classifica-

tion. In Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing (EMNLP), Online, 7–11
November 2021.

18. Linmei, H.; Yang, T.; Shi, C.; Ji, H.; Li, X. Heterogeneous Graph Attention Networks for Semi-supervised Short Text Classification.
In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-IJCNLP), Hong Kong, China, 3–7 November 2019.

19. Ai, W.; Wei, Y.; Shao, H.; Shou, Y.; Meng, T.; Li, K. Edge-enhanced minimum-margin graph attention network for short text
classification. Expert Syst. Appl. 2024, 251, 124069. [CrossRef]

20. Li, J.; Qiu, M.; Zhang, Y.; Xiong, N.; Li, Z. A Fast Obstacle Detection Method by Fusion of Double-Layer Region Growing
Algorithm and Grid-SECOND Detector. IEEE Access 2021, 9, 32053–32063. [CrossRef]

21. Wang, Y.; Wang, C.; Zhan, J.; Ma, W.; Jiang, Y. Text FCG: Fusing Contextual Information via Graph Learning for text classification.
Expert Syst. Appl. 2023, 219, 119658. [CrossRef]

22. Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; Vladu, A. Towards Deep Learning Models Resistant to Adversarial Attacks. In
Proceedings of the International Conference on Learning Representations, Vancouver, BC, Canada, 30 April–3 May 2018.

23. Zhang, Y.; Yang, J. Chinese NER Using Lattice LSTM. In Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics, Melbourne, Australia, 15–20 July 2018; Volume 1, pp. 1554–1564.

24. Dataset: THUCNews. Available online: http://thuctc.thunlp.org/ (accessed on 15 September 2022).
25. Dataset: Tutiao [DS/OL]. Available online: https://github.com/aceimnorstuvwxz/toutiao-dataset (accessed on 6 Septem-

ber 2022).
26. Dataset: Weibo2018. Available online: https://github.com/dengxiuqi/weibo2018 (accessed on 26 September 2018).
27. Dataset: SougouCS. Available online: https://tianchi.aliyun.com/dataset/94521 (accessed on 8 September 2022).
28. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is All You Need.

In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9
December 2017; pp. 6000–6010.

29. Zhou, Y.; Xu, J.; Cao, J.; Xu, B.; Li, C.; Xu, B. Hybrid attention networks for chinese short text classification. Comput. Y Sist. 2017,
21, 759–769. [CrossRef]

30. Kingma, P.D.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on Learn
ing Representations, San Diego, CA, USA, 7–9 May 2015.

31. Tao, H.; Tong, S.; Zhao, H.; Xu, T.; Jin, B.; Liu, Q. A Radical-Aware Attention-Based Model for Chinese Text Classification. In
Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019;
pp. 5125–5132.

https://doi.org/10.1007/s00500-017-2904-0
https://doi.org/10.1016/j.eswa.2024.124069
https://doi.org/10.1109/ACCESS.2020.3047711
https://doi.org/10.1016/j.eswa.2023.119658
http://thuctc.thunlp.org/
https://github.com/aceimnorstuvwxz/toutiao-dataset
https://github.com/dengxiuqi/weibo2018
https://tianchi.aliyun.com/dataset/94521
https://doi.org/10.13053/cys-21-4-2847

Appl. Sci. 2024, 14, 4906 17 of 17

32. Hao, M.; Xu, B.; Liang, J.; Zhang, B.; Yin, X. Chinese short text classification with mutual-attention convolu tional neural networks.
ACM Trans. Asian Low Resour. Lang. Inf. Process. 2020, 19, 61:1–61:13. [CrossRef]

33. Yang, S.; Liu, Y. A Character-Word Graph Attention Networks for Chinese Text Classification. In Proceedings of the 2021 IEEE
International Conference on Big Knowledge (ICBK), Auckland, New Zealand, 7–8 December 2021; pp. 462–469. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1145/3388970
https://doi.org/10.1109/ICKG52313.2021.00068

	Introduction
	Materials and Methods
	Model Framework
	Subsection Encoding Layer
	Graph Attention Layer
	Adjacency Matrix Processing
	Fusion Layer
	Attention Mechanism Layer

	Experiments
	Data Collection and Preprocessing
	Hardware Configuration
	Parameter Settings
	Comparison Model
	Evaluation Criteria

	Results and Discussion
	Sentiment Analysis Model Performance Evaluation
	Ablation Experiment

	Conclusions
	References

