
Computers & Security 146 (2024) 104058 

A
0

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

Transformer-based end-to-end attack on text CAPTCHAs with triplet deep
attention
Bo Zhang, Yu-Jie Xiong ∗, Chunming Xia, Yongbin Gao
School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China

A R T I C L E I N F O

Keywords:
Text-based captchas
Triplet deep attention
Query enhancement
Transfer learning strategy
Chinese captchas

A B S T R A C T

Websites frequently use text-based captcha images to distinguish whether the user is a person or not. Previous
research mainly focuses on different training strategies and neglects the characteristics of the text-based
captcha images themselves, resulting in low accuracy. For text-based captcha images characterized by rotation,
distortion, and non-character elements, we propose an end-to-end attack using a Transformer-based method
with triplet deep attention. Firstly, the features of text-based captchas are extracted using ResNet45 with
triplet deep attention module and Transformer encoder. The TDA module is capable of learning rotational
and distortion features of characters. Subsequently, based on self-attention mechanism, design query, key,
and value, and adopt the query enhancement module to enhance the query. The query enhancement module
can strengthen character localization and reduce attention drift towards non-character elements. Finally, the
feature maps are transformed into probabilities of character for the final text recognition. Experiments are
conducted on captcha datasets based on Roman characters from 9 popular websites, achieving average word
accuracy of 91.14%. To evaluate the performance of our method on data with small samples, experiments are
conducted different scales of training data. Additionally, we use the method on Chinese text-based captcha
tasks and achieve average word accuracy of 99.60%. The effectiveness of the method is also explored under
conditions of lack of illumination and scene text recognition, where background interference is present.
1. Introduction

Completely Automated Public Turing Test to Tell Computers and
Humans Apart (CAPTCHA) (Von Ahn et al., 2003) is a technique used to
recognize the difference between a human and an automated software
program. It determines whether a user is a real human by showing
the user an image and asking them to enter the correct information.
Different types of captchas often appear on websites during registration,
login, voting and other steps that require confirmation (Xu et al.,
2020). Among them, text-based captcha images are a widely used
type due to their low cost (Nian et al., 2022). Text-based captchas
rely on the user’s ability to recognize text and accurately enter the
corresponding characters to complete human and machine verification
of the website. To resist automated programs, researchers typically
increase the difficulty of recognition by adding elements such as noise,
background clutter and distorted characters to text images to achieve
maximum discrimination between humans and programs.

According to the framework for text-based captcha attack meth-
ods (Wang et al., 2023a), they can be categorized into traditional multi-
stage attacks, one-stage attacks. Traditional multi-stage attacks involve
a three-step process: preprocessing, segmentation and recognition. In

∗ Corresponding author.
E-mail address: xiong@sues.edu.cn (Y.-J. Xiong).

these attacks, the target characters are determined by performing spe-
cific preprocessing operations tailored to the characteristics of the
images. However, disadvantage of traditional multi-stage attacks is that
the feature extraction method must be developed manually, which can
be limited by human understanding and experience.

With the development in deep learning, one-stage attacks have
become more important. These attacks use a well-trained model based
on a deep learning network to directly recognize all characters in an
image without the need for additional operations. One-stage attacks
have become the standard method as they offer higher recognition
accuracy of the model. Due to the limited amount of data, researchers
have turned to the strategy of transfer learning to recognize text-based
captcha images in the absence of specific amount of data. The primary
concept behind transfer learning is to reduce the number of samples
required. This is achieved by first training a base model with a synthetic
dataset and then fine-tuning it with a small amount of real data. This
approach addresses the challenges posed by the limited amount of
data and helps to improve the model’s performance in recognizing
text-based captcha images.
https://doi.org/10.1016/j.cose.2024.104058
Received 8 February 2024; Received in revised form 12 July 2024; Accepted 13 Au
vailable online 17 August 2024 
167-4048/© 2024 Elsevier Ltd. All rights are reserved, including those for text and 
gust 2024

data mining, AI training, and similar technologies. 



B. Zhang et al. Computers & Security 146 (2024) 104058 
Table 1
The differences among existing methods.

Method Characteristic Preprocess Type Encoder Decoder

Chen et al. (2018) Matrix-based algorithm component merging IP Multi-stage – CNN
Wang et al. (2021a) Large character sets 3D image-based scheme – Multi-stage Faster R-CNN CNN+ATTN
Zhang et al. (2022) GAN Dark web GAN,IP Multi-stage – CNN
Zi et al. (2019) Chinese captcha attention – End-to-end Inception-v3 RNN
Ma et al. (2020) Arithmetic operation puzzle-based capthcha – End-to-end CNN LSTM
Dou (2021) Denoising encoder CRNN – End-to-end Denoising encoder CRNN
Nian et al. (2022) Object detection Mask R-CNN – End-to-end ResNet50 FPN Mask R-CNN
Tian and Xiong (2020) Priori denoising Semi-supervised IP Multi-stage ResNet101 GRU
Li et al. (2021) Cycle-GAN transfer learning GAN,IP Multi-stage CNN LSTM
Wang et al. (2023b) Cross-domain few-shot IP Multi-stage Meta-training MAML ProtoNet
Ours Triplet deep attention transformer – End-to-end ResNet45 with TDA transformer Transformer

The following abbreviations are used: IP = Image Processing ATTN = Attention.
Previous researchers have used long short-term memory (LSTM) (Yu
et al., 2019) as decoder to transform feature maps into probabilities of
character. LSTM is a type of recurrent neural network (RNN) (Wang
et al., 2022) designed to solve the vanishing gradient problem that can
occur in RNN and is widely used in various sequencing tasks (Cahuantzi
et al., 2023). However, LSTM processes the data sequentially, resulting
in slower model training and inference speed compared to Trans-
former’s self-attention mechanism. When dealing with long sequence
data, Transformer’s self-attention mechanism is better at capturing
long-range dependencies in sequences than LSTM. Text-based captcha
recognition is a subset of text recognition. In text recognition, it is im-
portant to take into account the dependencies between the characters.
Since the Transformer is more effective in capturing such relationships,
it is used for text-based captcha recognition.

During our observation of the dataset, we found that text-based
captcha images often feature characters that are rotated, distorted, and
obscured, with rotated and distorted fonts being particularly common.
We considered whether it would be possible to propose a method that
transforms the feature dimensions of the image, allowing the model to
learn the multidimensional features of the fonts to address this issue.
Additionally, the images frequently contain non-character elements
that cause attention drift. We considered enhancing the positional in-
formation of characters in the images to accurately distinguish between
character and non-character elements.

Therefore, we propose a Transformer-based end-to-end method with
triplet deep attention (TDA) to attack text-based captchas. Initially,
features are extracted from the CAPTCHA image using ResNet45 with
the TDA module and Transformer encoder. After obtaining the feature
maps, query, key, and value for self-attention are designed, followed
by function operations. Ultimately, the target characters are obtained.
In the framework of one-stage attacks, our experimental results show
excellent performance on 9 Roman real-world datasets. Exploring the
accuracy of the model with different samples using transfer learning
strategy. In order to facilitate the observation of experimental out-
comes, visualizations of feature maps are provided. Furthermore, the
method employed on 5 Chinese captcha datasets yielded outstanding
results.

Our main contributions are as follows:

• We propose the TDA module to extract shallow and deep fea-
tures from text-based captcha images by constructing relations
between dimensions through rotation operations and residual
connections to learn the dimensional features of rotated and
distorted characters.

• We adopt the QE module to enhance query, which aims to im-
prove character localization and reduce attention drift.

• Compared to existing studies, our method shows significant per-
formance improvements on 9 captcha schemes with Roman char-
acters and 5 captcha schemes with Chinese characters. In addi-
tion, we explored the method’s performance on various real-world

samples through transfer learning strategy.

2 
2. Related work

2.1. Captcha attacks

Text-based captcha attacks were categorized into two types: tradi-
tional multi-stage attacks and one-stage attacks (Wang et al., 2023a).
The characteristics of attack methods are shown in Table 1.

The traditional multi-stage attacks can be divided into three steps.
The first step is preprocessing, which removed some of the noise from
the image or converted the color image into monochrome images. This
step needed to be performed depended on the specific task. The second
step is segmentation, in which the text lines of the image were broken
down into individual character images. The third step is recognition
using machine learning algorithms such as SVM (Chandra and Bedi,
2021) or deep learning algorithms such as AlexNet (Krizhevsky et al.,
2012), VGG (Simonyan and Zisserman, 2014) and ResNet (He et al.,
2016). Multi-stage can be used for manual preprocessing tailored to
specific datasets, but doing so may result in lower model generalization.
Most segmentation-based captcha solvers follow this framework. Next,
we will present some multi-stage methods.

Chen et al. (2018) first repaired the character contour using a
thinning operation, obtained solid characters using an inner and outer
contour filling algorithm, and then extracted individual characters
using a least neighbor merging algorithm, which was the same as in
the Ref. Chen et al. (2019), and finally recognized using convolutional
neural networks (CNN). Wang et al. (2021a) analyzed the security
of captcha with large character set. They first employed Faster R-
CNN (Girshick, 2015) for text localization in click-based schemes,
followed by CNN and RNN for text recognition. Additionally, they
proposed a 3D image-based captcha scheme integrating semantic un-
derstanding and drag-and-drop actions, demonstrating through experi-
ments that this scheme is more robust. Zhang et al. (2022) proposed
DW-GAN for dark web text captcha, leveraging Generative Adver-
sarial Networks (GAN) (Aggarwal et al., 2021) to counteract back-
ground noise. They employed character segmentation techniques to
handle variable character lengths in captcha images. DW-GAN can
automatically solve captcha challenges in fewer than three attempts.

In recent years, end-to-end methods have become increasingly pop-
ular with the further development of deep learning technology. The
framework for one-stage attacks was dominated by end-to-end ap-
proaches. Researchers increasingly favored this approach, which elim-
inated the necessity for preprocessing and segmentation. Next, we will
present some one-stage methods.

To avoid manual preprocessing steps and make the attack simple
and effective. Zi et al. (2019) proposed an end-to-end network for at-
tacking text-based captchas using an encoder–decoder architecture. The
network used the Inception-v3 (Szegedy et al., 2016) model to extract
the feature maps and then decoded them by LSTM (Yu et al., 2019). Ma
et al. (2020) proposed a solution named Neural cpatcha Networks
(NCNs), aimed at addressing arithmetic operations and puzzle-based
cpatcha problems involving characters and spatial sequences of im-

age features. NCNs primarily consist of three conv blocks and two



B. Zhang et al. Computers & Security 146 (2024) 104058 
BiLSTM, utilizing Connectionist Temporal Classification (CTC) for loss
computation.

With the development of object detection technology. Nian et al.
(2022) used characters as target in object detection using Mask R-
CNN (He et al., 2017) for image character detection. To begin with,
the area of interest (ROI) was acquired by extracting the bounding box
of the character through the RPN (Fan et al., 2020) network, which
was then followed by classification. While Mask R-CNN was proficient
in accurately classifying characters, it was not as effective when it
came to sticky and overlapping characters. Dou (2021) proposed a
denoising encoder aimed at eliminating noise in captchas, with the
goal of restoring captcha images as closely as possible to their original
form. This process operates automatically and can be considered an
end-to-end approach. Additionally, Dou incorporates CRNN (Shi et al.,
2016) as a component of his method for recognizing text-based captcha
images. Initially, CRNN was primarily used for scene text recognition.
Since scene text recognition and text-based captcha recognition shared
similar objectives of identifying irregular characters in images. Follow-
ing this idea, the visual model of ABINet (Fang et al., 2021) for the
captcha attack task was reproduced and utilized as the backbone and
baseline.

Manually annotating text-based captcha images from real websites
incurred higher costs. Therefore, researchers actively explored methods
to enhance generalization by training with a limited number of samples.
Next, we will present some semi-supervised methods.

To reduce annotation costs, Tian and Xiong (2020) aim to recog-
nize captchas through semi-supervised methods. Initially, they use a
decomposer to decompose captcha into their basic components, thereby
obtaining clear captcha images. Subsequently, they fed both labeled
and unlabeled images into a semi-supervised classifier. Notably, for un-
labeled images, they utilize Contrastive Predictive Coding (CPC) (Oord
et al., 2018) for representation learning.

Due to the strong performance of Generative Adversarial Networks
in generating new data. Li et al. (2021) proposed an approach based on
cycle-consistent generative adversarial networks, reducing the cost of
data labeling and successfully attacking the captcha schemes deployed
by 10 popular websites. First, they use Cycle-GAN to train a captcha
synthesizer to generate some fake samples. Then, they train a basic
recognizer based on convolutional recurrent neural networks using
these fake data. Subsequently, they employ an active transfer learning
method to optimize the basic recognizer using a small amount of real
labeled captcha samples. Wang et al. (2023b) employed a prototype
network and a model-agnostic meta-learning strategy to tackle perfor-
mance degradation issues resulting from cross-domain variations and
class imbalances. They employed MAML (Finn et al., 2017) and Pro-
toNet (Snell et al., 2017) as classifiers. Subsequent evaluations in 5-shot
and 10-shot tasks revealed an average character accuracy surpassing
90%.

2.2. Attention mechanism

Attention is a cognitive process that involves selectively focusing
on certain parts of information and ignoring others. The attention
mechanism helps perceive the context while refining the perceived
information. The attention mechanism implemented with CNN is more
focused on channel and spatial information, while the self-attention
mechanism in the Transformer is dedicated to capturing similarity
between time steps.

In CNN, attention-based methods typically focused on channel and
spatial attention in feature map. By establishing mutual dependencies
between channels and spatial dimensions, with the goal of enhancing
feature representation capability, a series of notable methods emerged.
Among them, the most noteworthy included squeeze-and-excitation
networks (SENet) (Hu et al., 2018), ECANet (Wang et al., 2020b), and

triplet attention (TA) (Misra et al., 2021).

3 
SENet consisted of a squeeze operation and an excitation opera-
tion, which could adaptively recalibrate the importance of different
channels in feature map, leading to improved performance in tasks
such as image classification and object detection. ECA proposes an
adaptive method for selecting the size of one-dimensional convolutional
kernels. By avoiding dimension reduction, ECA effectively captures
interactions across channels. The goal is to utilize global average pool-
ing operations for capturing global contextual information in each
channel, thereby contributing to the enhancement of the model’s per-
formance and generalization capabilities. The TA consists of three
branches, establishing relationships between dimensions through rota-
tion operations and residual connections, emphasizing the importance
of multi-dimensional interactions. Moreover, TA has fewer parameters
compared to other attention modules (Hu et al., 2018; Woo et al.,
2018; Cao et al., 2019; Zhang et al., 2023) and performs well in
object detection. These methods ingeniously applied operations such
as convolution and pooling enabling the model to more precisely focus
on information closely relevant to the current task.

The above was the attention method that people were using based
on CNN. With the development of Transformer (Vaswani et al., 2017),
more people turned their attention to self-attention.

The self-attention mechanism is a crucial concept in the Trans-
former, commonly employed in computer vision tasks (Dosovitskiy
et al., 2020; Carion et al., 2020; Zhu et al., 2020; Wang et al., 2021b;
Liu et al., 2021). In the self-attention mechanism, each element in
the input sequence can attend to all other elements, and the attention
weights are computed based on the content of the elements. It has
two advantages : parallelism and long distance dependency. For each
element in the sequence, attention weights are obtained by a weighted
sum of all elements, and this process can be computed in parallel. This
allows the model to more efficiently handle long sequences, unlike RNN
that need to process sequentially. In RNN, information propagation
occurs step by step, making it challenging to capture relationships at
distant positions. The self-attention mechanism enables the model to
consider information from the entire sequence at each position, thus
better capturing dependencies at long distances within the sequence.
Previous works (Zi et al., 2019; Li et al., 2021; Yusuf et al., 2023)
used LSTM, a type of RNN, as decoder to decode extracted features.
In comparison to LSTM, self-attention excels in decoding.

3. Methodology

The overall structure of the proposed method is illustrated in Fig. 1.
Our method follow one-stage attack framework, employing an end-to-
end method to recognize complete character sequences. Firstly, feature
extraction is performed on the image, passing through ResNet45 with
TDA module, where the TDA module is positioned after the 3 × 3
convolution in each basic block. Secondly, The feature maps generated
by the Transformer encoder undergo further processing to extract key
and value information. Concurrently, the query is enhanced through
the QE module. In the end, the relationships between the query, key,
and value are calculated to obtain the final probability prediction for
characters.

3.1. Feature extraction

Feature extraction is responsible for extracting features from im-
ages, transforming the image into feature maps. Feature extraction
consists of two modules: ResNet45 with TDA module and Transformer

encoder.



B. Zhang et al. Computers & Security 146 (2024) 104058 
Fig. 1. The schematic illustration of our method for attacking text-based captchas. Using TDA and Transformer to extract features from images and generate feature maps. In
the decoding stage, the query vector is initialized with positional encoding, and further abstraction of the query vector is performed through a query enhancement module. After
self-attention, the target characters are obtained.
Fig. 2. TDA module.
𝑥

𝑥

3.1.1. ResNet45 with triplet deep attention module
The first part of feature extraction for text-based captcha images is

ResNet45 with TDA module. ResNet45 consists of 1 convolutional layer
with a kernel size of 3 and 5 stages. Each stage consists of 3, 4, 6, 6,
and 3 basic blocks, where each basic block consists of a convolutional
layer with a kernel size of 1, followed by a convolutional layer with a
kernel size of 3. As shown in Fig. 2, the TDA module is located in each
basic block of each stage in ResNet45 after 3 × 3 convolution.

TDA module follows the pipeline of triplet attention, comprising
three parallel branches. The first branch is used to build spatial atten-
tion by capturing interactions between spatial dimensions and channel
dimensions. The other two branches are responsible for capturing
the spatial attention between the channel dimensions and the spatial
dimensions H orW. Following attention capture, a fast one-dimensional
convolution is implemented with an adaptable size of 𝑘 to scale the
second and third dimensions. In the end, the outputs of the three
branches are aggregated by taking the average. The following outlines
the forward process of TDA module:
4 
Given a tensor 𝑥 ∈ R𝐶×𝐻×𝑊 . Turn 𝑥 ∈ R𝐶×𝐻×𝑊 into 𝑥̂1 ∈ R𝑊 ×𝐻×𝐶

and 𝑥 ∈ R𝐶×𝐻×𝑊 into 𝑥̂2 ∈ R𝐻×𝐶×𝑊 . Function 𝑅𝑜𝑡02 denotes exchang-
ing the zeroth dimension with the second dimension. Function 𝑅𝑜𝑡01
denotes exchanging the zeroth dimension with the first dimension.

̂0 = 𝑥 (1)

̂1 = 𝑅𝑜𝑡02(𝑥), 𝑥̂2 = 𝑅𝑜𝑡01(𝑥) (2)

Z-pool layer is employed to process the maximum pooling feature
and the average pooling feature connecting that dimension in order to
reduce the zeroth dimension of the tensor to two. The effect of this
process is to make the network layer less deep while retaining a rich
representation of the actual tensor, thus making further computation
more lightweight. The operation of the Z-pool layer can be expressed
by the following equation.

𝑍-pool(𝑥) = [MaxPool0𝑑 (𝑥),AvgPool0𝑑 (𝑥)] (3)

𝑥∗ = 𝑍-pool(𝑥̂ ) (4)
0,1,2 0,1,2



B. Zhang et al. Computers & Security 146 (2024) 104058 
Fig. 3. Transformer encoder.

After applying 7 × 7 convolution, one-dimensional convolution
operation is carried out using kernel size of k. The weight 𝑦 for each
channel is derived through the activation function 𝜎.

𝑦0 = 𝜎(𝐶1𝐷𝑘(𝑥∗0)), where 𝑥
∗
0 =

[

𝑥∗0
𝐻
, 𝑥∗0

𝑊
]

(5)

𝑦1 = 𝜎(𝐶1𝐷𝑘(𝑥∗1)), where 𝑥
∗
1 =

[

𝑥∗1
𝐻
, 𝑥∗1

𝐶
]

(6)

𝑦2 = 𝜎(𝐶1𝐷𝑘(𝑥∗2)), where 𝑥
∗
2 =

[

𝑥∗2
𝐶
, 𝑥∗2

𝑊
]

(7)

The size of the convolution kernel k is adaptively changed through
a function 𝜓(𝑐).

𝜓(𝑐) =
|

|

|

|

log2(𝑐)
𝛾

+ 𝑏
𝛾
|

|

|

|

, where 𝛾 = 2, 𝑏 = 1 (8)

The final step involves restoring the rotated branch to its initial
state, and obtaining the ultimate output result through a straightfor-
ward averaging operation.

𝑦1 = 𝑅𝑜𝑡02(𝑦1), 𝑦2 = 𝑅𝑜𝑡01(𝑦2) (9)

𝑦 = 1
3
(𝑦0 + 𝑦1 + 𝑦2) (10)

After undergoing feature extraction with ResNet45, 𝑦 will be fed
into the Transformer encoder for the second part of feature extraction.

3.1.2. Enhanced feature extraction use transformer encoder
The second part of feature extraction involves 3 sequentially com-

posed Transformer encoding layers. As shown in Fig. 3, the input tensor
sequence undergoes positional encoding, and is then added to the
original sequence. Subsequently, correlations between sequences are
calculated through 8 attention heads. Multi-head attention divides the
parameters of query, key, and value into 8 parts, and then each part is
processed independently by a separate attention head. The results from
the 8 heads are combined to form the final attention scores. Following
that, residual connections and layer normalization are applied. Lastly,
the feature map is obtained through a feedforward network, followed
by another round of residual connections and layer normalization.
The entire Transformer encoding process utilizes the ReLU activation
function.
5 
Fig. 4. Query enhancement.

3.2. Character recognition

The core of the character recognition module lies in the carefully
crafted positional attention mechanism, namely the decoder, with the
goal of transforming visual features into probabilities of character. It
consists of two modules: design key and value in decoder and query
enhancement.

3.2.1. Design key and value in decoder
After obtaining the feature map, in order to better transform visual

features into probabilities of character, a mini-sized U-Net was added
to the feature map, serving as the key for the attention mechanism. The
U-Net’s encoder and decoder each consist of 4 layers. The convolutional
kernel size of the first encoder layer is 3, with a stride and padding of 1
and 2, respectively. For the remaining encoder layers, the convolutional
kernel size is 3, with a stride and padding of 2 and 2. The upsampling
process of the decoder layer employs nearest-neighbor interpolation,
doubling both the height and width. A mini-sized U-Net operation
is applied to key, while value undergoes an identity mapping. 𝐹𝑒
represents feature map of encoder. 𝜇 denotes a mini-sized U-Net, and
𝜑 denotes an identity mapping. 𝐾 and 𝑉 denotes key and value.

𝐾 = 𝜇(𝐹𝑒) ∈ 𝑅
𝐻𝑊
16 ×𝐶 (11)

𝑉 = 𝜑(𝐹𝑒) ∈ 𝑅
𝐻𝑊
16 ×𝐶 (12)

3.2.2. Query enhancement module
As shown in Fig. 4, the core of query enhancement module is a

self-attention mechanism with upper triangular mask. Upper triangular
mask design serves two purposes. The first purpose is to effectively re-
duce the computational cost associated with calculating blank padding
areas by masking out ineffective padding regions, thereby improving
overall computational efficiency. The second purpose is that upper
triangular mask prevents the model from accessing future information,
ensuring that attention module only attends to past and present in-
formation during processing. The following will explain the forward
process of the query enhancement module, as well as how to use posi-
tional attention to transform visual features into character probabilities
of character.

The initialization of query vectors involves using sinusoidal encod-
ing, which is a type of relative encoding. Relative positional encoding is
more conducive to the model’s generalization compared to absolute po-
sitional encoding. B denotes batchsize.  denotes mask self-attention
and 𝑄 denotes query .



B. Zhang et al. Computers & Security 146 (2024) 104058 
Table 2
Roman character-based schemes (px = pixel).
Table 3
Chinese character-based schemes (px = pixel).

Scheme Example Length Size(px) Features Characters set Train set Test set

Baidu 2 100*40 Noise arcs, rotation overlapping 949 10,000 1000

Douban 3∼5 250*40 Complex background distortion, rotation 984 10,000 1000

Dajie 4 80*34 Noise arcs, warping rotation 2468 10,000 1000

It168 4 150*50 Noise arcs, rotation complex background 747 10,000 1000

Renmin 2 120*32 Complex background rotation 484 10,000 1000
𝑃𝐸(𝑝𝑜𝑠, 2𝑖) = 𝑠𝑖𝑛(
𝑝𝑜𝑠

10000
2𝑖

𝑑𝑚𝑜𝑑𝑒𝑙

) (13)

𝑃𝐸(𝑝𝑜𝑠, 2𝑖 + 1) = 𝑐𝑜𝑠(
𝑝𝑜𝑠

10000
2𝑖

𝑑𝑚𝑜𝑑𝑒𝑙

) (14)

𝑄′ = {𝑃𝐸(𝑝𝑜𝑠, 2𝑖), 𝑃𝐸(𝑝𝑜𝑠, 2𝑖 + 1)} ∈ R𝐵×26×512 (15)

𝑄 = (𝑄′) (16)

Implement self-attention on 𝑄, 𝐾, and 𝑉 to convert visual features
into probabilities of character. Multiply 𝑄 by the transpose of 𝐾, then
divide by

√

𝑑𝑘, followed by a softmax operation, and multiply the result
by 𝑉 . The purpose of

√

𝑑𝑘 is to scale the attention weights, aiming to
enhance the stability and training effectiveness of the model.

𝑂𝑢𝑡𝑝𝑢𝑡(𝑄,𝐾, 𝑉 ) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑄 ⋅𝐾𝑇
√

𝑑𝑘
)𝑉 (17)

The Output signifies the predicted character sequence, and the cross-
entropy function is subsequently employed to compute the distance
between the Output and the ground truth. Model parameters are up-
dated through back propagation. Through continuous training, model
gradually acquires the ability to generate accurate results.

4. Experiments

4.1. Dataset and implementation details

The dataset used in the experiment is XDCAPTCHA (Wang et al.,
2023a). The character set of CAPTCHA images in XDCAPTCHA includes
two types: Roman and Chinese.
6 
The Roman character-based dataset includes 15 real-world schemes
and 1 synthetic scheme. For each real-world scheme, the training and
testing sets of Roman character-based captcha images consist of 8500
and 1000 images. The synthetic dataset, SynCAPTCHA1, comprises
100,000 training images and 20,000 testing images. As shown in Ta-
ble 2. In the Roman character-based setting, experiments are conducted
on 9 real-world schemes and 1 synthetic scheme. The remaining 6 real-
world schemes were removed from the experiments as the previous
methods had already performed satisfactorily on them.

The Chinese character-based dataset includes 5 real-world schemes
and 1 synthetic scheme. For each real-world scheme, the training
and testing sets of Chinese character-based captcha images consist
of 100,000 and 1000 images. As shown in Table 3. In the Chinese
character-based setting, experiments are conducted on 5 real-world
schemes. The remaining synthetic scheme, it was removed from the
experiments for the same reasons as the 6 real-world schemas that were
removed from the Roman character-based Experiments.

The text-based captcha images were preprocessed by resizing them
to 32 × 128 dimensions and applying various geometric transfor-
mations, including rotation, affine transformations, and perspective
operations. Model automatically performs the preprocessing steps, re-
quiring no manual intervention for specific image processing. As shown
in Table 5, the entire workflow of the method is executed on a worksta-
tion equipped with an NVIDIA GeForce RTX 3080 GPU (10 GB VRAM).
During training, a batch size of 20 is utilized, and the model is trained
for 200 epochs with a learning rate of 0.0001, utilizing the Adam
optimizer to update model parameters.



B. Zhang et al. Computers & Security 146 (2024) 104058 
Table 4
Comparison with existing Works.

Method 360_1 360_2 Alipay Apple Microsoft QQmail Sina Weibo Wiki Avg

Wojna et al. (2017)a 70.8 72 96.6 78.4 77.2 80.4 85.2 86.8 87.8 81.68
Zi et al. (2019) 83 84.3 96.4 82.4 74.8 79 86.2 86 90.6 84.74
Wang et al. (2020a) 79.9 66.6 96.9 81.1 67.3 80.5 91.6 91.4 79.5 81.64
Tian and Xiong (2020) – – – 68.4 56.6 – 84 88.2 87 –
Wang et al. (2020c)a 77.4 57.2 97.2 88.4 77.4 86.6 90.2 88.6 87.2 83.35
Li et al. (2021) – – – 88.1 53.3 – 90 91 87.5 –
Nian et al. (2022) 67.6 – – 80.8 70.2 75.6 92.8 – 88.8 –
Ours 92.3 81.4 97.3 90.3 90.8 90.3 91.9 93.8 92.2 91.14

Wang et al. (2023a) reproduced the experiments for capthca attack using the original methods.
a Denote the original method of reproduction.
Table 5
Experimental setting.

Setting Value

CPU i9-9900K 3.60 Hz
GPU RTX 3080 (10 GB)
Batch size 20
Epoch 200
Learning rate 0.0001
Optimizer Adam

4.2. Evaluation metric

To evaluate the effectiveness of the attack, character accuracy (CA)
and word accuracy (WA) are used as metrics to assess the success of
the attack. CA primarily focuses on the accuracy of each individual
character, assessing the model’s performance by comparing the gener-
ated text with each character’s alignment in the target text. WA is more
comprehensive, considering the correctness of entire words.

Specifically, 𝑁𝑤 is used to denote the number of letters in a word,
while 𝑁𝑐 represents the number of correctly predicted characters.
Additionally, the symbol 𝑁𝑎 signifies the all number of words in the
entire set, and 𝑁𝑤′ denotes the number of words correctly predicted.

𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑐
𝑁𝑤

× 100% (18)

𝑊 𝑜𝑟𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑤′
𝑁𝑎

× 100% (19)

4.3. Result and comparisons with existing work

According to the results in Table 4, the method has achieved ex-
cellent results across 9 Roman real-world schemes, with average word
accuracy of 91.14%. Model utilizes TDA and QE modules, with the TDA
module proving effective in recognizing rotated captcha images. For
instance, the word accuracy for Apple and Microsoft are 90.3% and
90.8%. In schemes like Apple, characterized by significant background
noise, model accurately locates the positions of characters, achieving
word accuracy of 90.3%. In schemes such as 360_2, characterized by
significant foreground noise, the word accuracy is 81.4%, which is 2.9%
lower compared to Zi et al. (2019).

There are two reasons why our method word accuracy is 2.9%
lower than that of Zi et al.’s method. The first reason is that Zi et al.
tested their method with 500 captcha images, which is 500 images less
than our test set. Our results with 500 images for the test showed an
accuracy of 83.0%, an improvement of 1.6% over the test with 1000
captcha images, but still 1.3% lower than the method of Zi et al. The
second reason is that our test set is randomly split, while Zi et al. did not
release their test set, causing potential disparities in data distribution
between the two methods, resulting in word accuracy 1.3% lower than
Zi et al. For other schemes, method is capable of accurately attacking
target captcha images.

To validate the effectiveness of our method on other datasets, ex-
periments were conducted on the dark web dataset provided by Zhang
7 
Table 6
Experimental results on dark web dataset.

Scheme Example Tang et al. (2018) Zhang et al. (2022) Ours

Rescator1 88.12 94.40 95.00

Rescator2 77.23 97.50 98.02

Yellow Brick 93.72 95.98 97.06

Table 7
Impact of different branches.
𝐵𝑅𝐶𝐻𝑊 𝐵𝑅𝑊𝐻𝐶 𝐵𝑅𝐻𝐶𝑊 CA (%) WA (%)

– – – 97.33 90.02
✓ – – 97.52 90.44
– ✓ – 97.32 90.00
– – ✓ 97.26 90.28
✓ ✓ – 97.45 90.40
✓ – ✓ 97.43 90.32
– ✓ ✓ 97.42 90.32
✓ ✓ ✓ 97.56 90.65

et al. (2022). The dark web dataset has additional background noise
and variable character lengths. Each scheme was trained on a training
set of 400 samples and tested on a set of 100 samples from the dark
web dataset after retraining our method. The experimental setting con-
ducted on the dark web dataset is the same as that on the XDCAPTCHA
dataset.

The experimental results on the dark web dataset are shown in
Table 6. Our method performs well on the dark web dataset. For
each scheme, Rescator1, Rescator2, and Yellow Brick, the word accu-
racy is 95%, 98.02%, and 97.06%, respectively, which represents an
improvement of 0.6%, 0.52%, and 1.08% over Zhang et al. (2022).

4.4. Ablation study

Due to the integration of ECANet into the TDA module, it is nec-
essary to assess the impact of ECANet on different branches. The ex-
periment will conduct ablation experiments on each branch of the TDA
module to determine the optimal number of branches, thus specifically
evaluating the contribution of ECANet within the TDA module.

The results of the experiment are shown in the Table 7. In the
single-branch case, 𝐵𝑅𝐶𝐻𝑊 performs the best, followed by 𝐵𝑅𝐻𝐶𝑊 ,
and 𝐵𝑅𝑊𝐻𝐶 ranks last. The addition of ECANet to the 𝐵𝑅𝑊𝐻𝐶 branch
results in a decrease in performance. In the two-branch case, the
parallel combination of 𝐵𝑅𝐶𝐻𝑊 and 𝐵𝑅𝑊𝐻𝐶 yields the best results, but
it falls below the performance of 𝐵𝑅𝐶𝐻𝑊 in the single-branch scenario,
indicating the dominance of the 𝐵𝑅𝐶𝐻𝑊 branch within the entire TDA.
In the three-branch case, the experimental results are optimal, showing
0.63% improvement in TA performance with the inclusion of ECANet.

QE enhances the embedding by using a multi-headed self-attentive
block from vanilla Transformer (Vaswani et al., 2017). A mask is em-
ployed on the query vector within the self-attention block, specifically
in the upper triangular region. This is done to prevent it from ‘‘seeing



B. Zhang et al. Computers & Security 146 (2024) 104058 
Fig. 5. The transfer learning strategy use training model using synthetic data to obtain a pre-trained model initially. Subsequently, real-world data is used to fine-tune the existing
parameters of the pre-trained model.
Table 8
Performance of TDA and QE module.

Model CA(%) WA(%)

Baseline (Fang et al., 2021) 97.41 90.10
+ TDA 97.56 90.65
+ QE 97.44 90.17
+ TDA & QE 97.65 91.14

itself’’. In other words, this is done to avoid the leakage of information
across different time steps (Zheng et al., 2024).

The results of the experiment are shown in the Table 8. Compared
to the baseline, adding the QE module independently results in a slight
improvement of 0.07%. When both the TDA and QE modules are simul-
taneously integrated, there is an average word accuracy improvement
of 1.04%.

According to the results of ablation experiments, individually
adding the TDA and QE modules does not enhance the method as
significantly as adding both the TDA and QE modules simultaneously.
The combined inclusion of these modules yields a greater improvement,
demonstrating their synergistic effect on the overall performance of the
method.

4.5. Method training time and attack speed

Training time and attack speed are key metrics for evaluating the
effectiveness of the method. Next, we will analyze the training time
and compare the performance of attack speed on CPU and GPU with
and without the TDA module.

As shown in Fig. 6, the average running time of the method is given
in parentheses below each scheme on the 𝑥-axis, where ‘‘m’’ represents
minutes, the average time for one epoch. Microsoft has the longest
training time, about 2.17 min per epoch, while Wiki has the shortest
training time, about 1.27 min per epoch. The overall average time is
1.46 min per epoch.

In the Fig. 6, the blue line represents TDA is used, while the red
line represents without TDA. Triangle represent model evaluation on
the CPU, while pentagrams represent evaluation on the GPU. When the
model attacks the captcha on the CPU, the average time with TDA is
around 10.6 ms, without TDA it is around 8.2 ms, showing a difference
of 2.4 ms. When the model attacks the captcha on the GPU, the average
time with TDA is around 5.6 ms, without TDA it is around 4.8 ms,
showing a difference of 0.8 ms. For captcha attack, this is an acceptable
range.
8 
Fig. 6. Compare attack speed on CPU and GPU with and without TDA. Blue line
represents TDA is used. Red line represents without TDA. Triangle represent model
evaluation on the CPU. Pentagrams represent model evaluation on the GPU. The letter
‘‘m’’ represents for minutes of per epoch.

4.6. Transfer learning strategy

End-to-end attack methods, through clever design, fully utilized the
model’s performance on independent and sufficiently large datasets,
demonstrating excellent experimental results. However, when the num-
ber of real datasets is limited, the results of training specifically for a
particular dataset are often unsatisfactory. Therefore, researchers are
exploring transfer learning strategies aimed at proposing a universal
recognition model capable of effectively handling low-sample images.
Transfer learning strategy pipeline and result are shown in Fig. 5
and Table 9. First, train the model using a synthetic dataset to obtain
a pre-training model with pre-trained weights. Subsequently, fine-tune
the model using real-world data.

More specifically, training a pre-trained model on a large amount
of synthetic datasets for downstream tasks. Subsequently, fine-tuning is
performed on real datasets to adapt to specific data distributions. We
conducted 40 epochs of pre-training on the model using SynCAPTCHA1



B. Zhang et al. Computers & Security 146 (2024) 104058 
Table 9
Transfer learning strategy result.

Scheme Pre-trained model Fine-tuned model

100,000 500 1000 2000 8500

CA(%) WA(%) CA(%) WA(%) CA(%) WA(%) CA(%) WA(%) CA(%) WA(%)

360_1 2.30 0.00 88.62 61.20 93.73 77.10 96.10 84.70 97.59 89.80
360_2 4.10 0.00 85.78 54.30 90.29 65.50 93.55 75.10 95.60 81.90
Alipay 7.40 0.00 98.45 94.40 99.05 96.20 99.22 96.90 99.40 97.60
Apple 15.20 0.00 90.53 70.10 92.14 75.40 94.62 80.90 96.13 87.10
Microsoft 23.30 0.70 78.09 38.70 85.03 52.80 90.34 65.80 95.13 81.10
QQmail 4.50 0.00 84.72 58.30 92.23 76.60 94.87 84.90 96.60 90.10
Sina 18.00 0.20 96.04 87.40 96.18 86.80 96.98 90.30 97.36 91.90
Weibo 10.40 0.00 95.57 84.40 96.47 87.20 97.12 89.70 97.98 92.50
Wiki 13.00 0.00 97.62 82.60 98.09 86.60 98.35 88.20 98.96 92.50
Avg 10.91 0.10 90.60 70.15 93.69 78.24 95.68 84.05 97.19 89.38
a
T
4
I
t
t
a
m
s
d

4

b
u
p
a

as the training dataset. Following this, we fine-tuned the schemes
based on Roman characters by employing 500, 1000, 2000, and 8500
real-world samples in 40 epochs.

Without fine-tuning, the word accuracy is only 0.10%. After fine-
tuning with 500, 1000, 2000, and 8500 real samples for 40 epochs, the
word accuracy are 70.15%, 78.24%, 84.05%, and 89.38%. The results
obtained through the transfer learning strategy show an increase in
word accuracy by 0.5%, 0.3%, and 0.3% on the 360_2, Alipay, and
Wiki.

We adopted transfer learning strategy, utilizing only 5.8%, 8.5%,
and 23.5% of the original dataset. This resulted in word accuracy
reaching 76.9%, 85.8%, and 92.2% of the end-to-end training result.
By fine-tuning with the complete dataset, we can elevate the word
accuracy to 98% of the end-to-end training result. When facing a new
dataset, simply fine-tuning a pre-trained model with the new dataset
can achieve word accuracy close to that of fully trained models. This
strategy saves retraining time and improves the model’s generalization.

4.7. Visualization analysis

As shown in Fig. 8, by visualizing the feature maps of the model,
we compare the roles of different attentions on various character com-
ponents. We select 14 images for illustration, covering samples from 9
different datasets. Each image consists of two columns, where the first
row of the first column represents the original image, and the first row
of the second column indicates the attention positions of all characters.
The remaining sub-images display the attention positions of individual
characters, while the black and white images are used for a clearer
contrast of attention ranges.

The last row displays samples of recognition errors. In the first
example of the last row, due to the overlapping of the letters ‘H’ and ‘B’,
the model incorrectly identifies ‘B’ as ‘3’. The same error occurs in the
image ‘MFCE,’ where ‘C’ is mistakenly identified as ‘Q’. Based on the
above content, researchers can contemplate how to design captcha im-
ages with character adhesion to effectively prevent automated attacks
by computer recognition programs.

Based on the visualization results, our method demonstrates ac-
curate character localization and successful recognition even in the
presence of occlusion, interference from non-character elements, and
text rotation. However, the performance decreases when two characters
overlap significantly.

4.8. Effects of lack of illumination

From the visualization results, it is evident that our method can
recognize captcha images containing features such as occlusion, inter-
ference from non-character elements, and text rotation. However, most
images have a white background, giving them a brighter appearance.
When the background brightness is reduced, it is necessary to discuss
whether our method can still successfully attack the captcha image

under lack of illumination conditions. e

9 
We reduced the brightness of the training and test sets to half of the
original images, while keeping the other training setting unchanged.
The experimental results are shown in Table 10. WA_O represents the
original word accuracy, which is the same as the value in the last row of
Table 4. WA_L represents the word accuracy lack of illumination. The
blue and red fonts indicate how much the word accuracy decreased and
increased.

From the results in Table 10, we notice that reducing the brightness
by half causes a decrease in word accuracy for all schemes except
360_2, Sina and Wiki. The largest decrease is observed in 360_1, which
drops by 1.80%, while the smallest decrease is in Apple, which drops
by only 0.30%. On average, the word accuracy decreases by 0.49%.
However, in the 360_2, Sina and Wiki schemes, word accuracy increases
by 0.20%, 0.50% and 0.40%. This indicates that reducing the brightness
of the images decreases some specially designed interfering features
under lack of illumination conditions. Overall, our method can still suc-
cessfully attack most of the captcha images even when the brightness
is reduced.

4.9. Result of adding Gaussian noise to the image

Based on word accuracy, 360_2 has the lowest word accuracy. From
a defense perspective, adding background noise to the image can reduce
the accuracy of attacks. Therefore, we added Gaussian noise (Ho et al.,
2020) to the images and conducted experiments on them. The noise
formula 𝑔(𝑥) is as follows, where 𝜇 = 0 and 𝜎 = 30. By adding the noise
to the original image, the noisy image is obtained. The experimental
results are shown in Table 11.

𝑔(𝑥) = 1

𝜎
√

2𝜋
exp

(

−1
2
(𝑥 − 𝜇)2

𝜎2

)

, 𝜇 = 0, 𝜎 = 30 (20)

Based on the experimental results in Table 11, we find that the
verage word accuracy decreases by 2.18% after adding Gaussian noise.
he 360_1 scheme experiences the largest drop, with a decrease of
.30%, while the Sina scheme sees the smallest decrease, at 0.50%.
n the 360_1 scheme, the Gaussian noise blurs the main features of
he characters, reducing the attack accuracy. The accuracy of both
he 360_2 and Microsoft schemes decreased by 4%. The 360_2 scheme
lready has significant background noise, and the added Gaussian noise
akes some characters indistinguishable even to humans. For other

chemes, Gaussian noise reduced the success rate of attacks to varying
egrees.

.10. Attacks on Chinese text captcha images

Chinese websites typically use Chinese text captchas to distinguish
etween users and computer programs, ensuring that only real human
sers can access the site. Experiments were conducted to explore the
erformance of method in handling Chinese text captcha images. In
ttacks on Chinese text captcha experiments, the same experimental
nvironment and setting as the Roman character dataset are adopted.



B. Zhang et al. Computers & Security 146 (2024) 104058 
Table 10
Word accuracy under lack of illumination.

WA_O represents the original word accuracy. WA_L represents the word
accuracy lack of illumination. The blue and red fonts indicate how much
the word accuracy decreased and increased.

Table 11
Word accuracy after adding Gaussian noise to the image.

WA_O represents the original word accuracy. WA_G represents the word
accuracy after adding Gaussian noise. The blue fonts indicate how much
the word accuracy decreased.

Table 12
Attacks on Chinese character-based dataset result.

Scheme Wojna et al. (2017)a Wang et al. (2020c)a Ours

Baidu 76.80 91.80 98.30
Douban 97.40 98.00 99.90
Dajie 94.60 98.60 99.90
It168 98.80 97.80 100.00
Remin 96.20 99.80 99.90
Avg 92.76 97.20 99.60

Wang et al. (2023a) reproduced the experiments for capthca attack using the original
methods.
a Denote the original method of reproduction.

The English character set has been changed to the Chinese character
set, which includes 6280 different Chinese characters. The results are
shown in Table 12. The average accuracy of words in results is 99.60%.

4.11. Performance in scene text recognition

To evaluate the generalization of our method, we conduct experi-
ments on the scene text recognition task. The training and test datasets
are provided by Baek et al. (2021). Examples of images from the
training and test sets are shown in Fig. 7. The training set includes
SVT, IC13, IC15, IIIT, COCO, RCTW17, Uber, ArT, LSVT, MLT19, and
10 
Fig. 7. Some examples from the scene text recognition test datasets.

Table 13
Recognition results on the scene text datasets.

Scheme CRNNa (Shi et al., 2016) TRBAa (Baek et al., 2019) Ours

IC13 86.3 92.6 94.5
IC15 62.2 76.0 73.1
IIIT 83.5 93.5 93.9
CUTE 64.7 86.1 88.5
Avg 74.2 87.1 87.5

Baek et al. (2021) reproduced the experiments using real-world training datasets.
a Denote the original method of reproduction.

ReCTS, totaling 278,388 images. The test set includes IC13, IC15, IIIT,
and CUTE80, with 1015, 2077, 3000, and 288 images. The experiment
trained for a total of 8 epochs, and the other experimental settings
remain the same as before.

The recognition results on the scene text datasets are shown in
Table 13. Our word accuracy on IC13, IIIT, and CUTE datasets is higher
than TRBA (Baek et al., 2019) by 1.9%, 0.4%, and 2.4%, respectively.
However, our results on the IC15 dataset are 2.9% lower than TRBA.
From the experimental results, we can conclude that our method has
better recognition performance for rotated text, but it does not perform
well in situations where background features are inconsistent.

5. Countermeasures

To counter our attacks, we provide some implementation sugges-
tions to ensure system safety.

For capthca images, most text-based capthca images currently have
relatively clean backgrounds. To reduce word accuracy, researchers can
consider decreasing the image brightness or adding Gaussian noise.

Our attack method operates at a faster speed. In contrast, hu-
man verification of captcha requires considerably more time spent
typing on a keyboard, a process that far exceeds our attack speed. Re-
searchers leverage this behavioral characteristic to impose constraints
during captcha verification. For instance, recognition speeds surpassing
a certain threshold could indicate automated processes. Furthermore,
keystrokes on the keyboard can be detected by the system, enabling
the addition of keystroke detection (Wang et al., 2023a) to distinguish
human users.

Increasing the difficulty of obtaining captcha. Our method requires
a sufficient number of images for training, so researchers can con-
sider making it harder to obtain captcha images, thereby reducing the
number of images acquired through mechanisms like web crawlers.
For example, each IP address could be limited to a certain number of
captcha image requests within a given time frame. This would not only
decrease the likelihood of web crawlers acquiring captcha images in
bulk but also prevent malicious users from abusing system resources.



B. Zhang et al. Computers & Security 146 (2024) 104058 
Fig. 8. Selected various samples from 9 Roman character schemes and visualized their feature maps. The last row displays the incorrect results of the attack.
6. Conclusion and future work

This study extensively investigates the limitations in feature extrac-
tion and character localization of current text-based captcha recogni-
tion methods. We propose a triple deep attention module designed to
efficiently extract character features by extracting cross-dimensional
features in both spatial and channel dimensions. In our method, we
adopt query enhancement module to enhance the positional informa-
tion of the characters and reduce the attentional drift. With these
improvements, the model is able to accurately locate the detailed
features of characters, resulting in a significant increase in recognition
accuracy and more satisfactory results. We reduced training samples
by employing transfer learning strategy. Additionally, our method ex-
hibited satisfactory performance when utilized on Chinese text-based
captcha dataset. We further explored the method’s effectiveness under
conditions of reduced brightness and added Gaussian noise in images.
Since manually annotating captcha images is time-consuming, we will
11 
explore how to apply our method using semi-supervised approach in
the future.

CRediT authorship contribution statement

Bo Zhang: Writing – review & editing, Writing – original draft,
Visualization. Yu-Jie Xiong: Supervision. Chunming Xia: Resources.
Yongbin Gao: Resources.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

The authors do not have permission to share data.



B. Zhang et al. Computers & Security 146 (2024) 104058 
Acknowledgments

This work was supported by the National Natural Science Foun-
dation of China (62006150); Science and Technology Commission of
Shanghai Municipality, China (21DZ2203100).

References

Aggarwal, A., Mittal, M., Battineni, G., 2021. Generative adversarial network: An
overview of theory and applications. Int. J. Inf. Manage. Data Insights 1 (1),
100004.

Baek, J., Kim, G., Lee, J., Park, S., Han, D., Yun, S., Oh, S.J., Lee, H., 2019. What is
wrong with scene text recognition model comparisons? dataset and model analysis.
In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp.
4715–4723.

Baek, J., Matsui, Y., Aizawa, K., 2021. What if we only use real datasets for scene text
recognition? toward scene text recognition with fewer labels. In: Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 3113–3122.

Cahuantzi, R., Chen, X., Güttel, S., 2023. A comparison of LSTM and GRU networks
for learning symbolic sequences. In: Science and Information Conference. Springer,
pp. 771–785.

Cao, Y., Xu, J., Lin, S., Wei, F., Hu, H., 2019. Gcnet: Non-local networks meet squeeze-
excitation networks and beyond. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision Workshops.

Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S., 2020. End-
to-end object detection with transformers. In: European Conference on Computer
Vision. Springer, pp. 213–229.

Chandra, M.A., Bedi, S., 2021. Survey on SVM and their application in image
classification. Int. J. Inf. Technol. 13, 1–11.

Chen, J., Luo, X., Hu, J., Ye, D., Gong, D., 2018. An attack on hollow captcha using
accurate filling and nonredundant merging. IETE Tech. Rev. 35 (sup1), 106–118.

Chen, J., Luo, X., Liu, Y., Wang, J., Ma, Y., 2019. Selective learning confusion class
for text-based CAPTCHA recognition. IEEE Access 7, 22246–22259. http://dx.doi.
org/10.1109/access.2019.2899044.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T.,
Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al., 2020. An image is
worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929.

Dou, Z., 2021. The text captcha solver: A convolutional recurrent neural network-based
approach. In: 2021 International Conference on Big Data Analysis and Computer
Science. BDACS, IEEE, pp. 273–283.

Fan, Q., Zhuo, W., Tang, C.-K., Tai, Y.-W., 2020. Few-shot object detection with
attention-RPN and multi-relation detector. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 4013–4022.

Fang, S., Xie, H., Wang, Y., Mao, Z., Zhang, Y., 2021. Read like humans: Autonomous,
bidirectional and iterative language modeling for scene text recognition. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
pp. 7098–7107.

Finn, C., Abbeel, P., Levine, S., 2017. Model-agnostic meta-learning for fast adaptation
of deep networks. In: International Conference on Machine Learning. PMLR, pp.
1126–1135.

Girshick, R., 2015. Fast r-cnn. In: Proceedings of the IEEE International Conference on
Computer Vision. pp. 1440–1448.

He, K., Gkioxari, G., Dollár, P., Girshick, R., 2017. Mask r-cnn. In: Proceedings of the
IEEE International Conference on Computer Vision. pp. 2961–2969.

He, K., Zhang, X., Ren, S., Sun, J., 2016. Deep residual learning for image recog-
nition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. pp. 770–778.

Ho, J., Jain, A., Abbeel, P., 2020. Denoising diffusion probabilistic models. arXiv
preprint arXiv:2006.11239.

Hu, J., Shen, L., Sun, G., 2018. Squeeze-and-excitation networks. In: Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition. pp. 7132–7141.

Krizhevsky, A., Sutskever, I., Hinton, G.E., 2012. Imagenet classification with deep
convolutional neural networks. Adv. Neural Inf. Process. Syst. 25.

Li, C., Chen, X., Wang, H., Wang, P., Zhang, Y., Wang, W., 2021. End-to-end attack
on text-based CAPTCHAs based on cycle-consistent generative adversarial network.
Neurocomputing 433, 223–236.

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B., 2021. Swin
transformer: Hierarchical vision transformer using shifted windows. In: Proceedings
of the IEEE/CVF International Conference on Computer Vision. pp. 10012–10022.

Ma, Y., Zhong, G., Liu, W., Sun, J., Huang, K., 2020. Neural CAPTCHA networks. Appl.
Soft Comput. 97, 106769.

Misra, D., Nalamada, T., Arasanipalai, A.U., Hou, Q., 2021. Rotate to attend: Convolu-
tional triplet attention module. In: Proceedings of the IEEE/CVF Winter Conference
on Applications of Computer Vision. pp. 3139–3148.
12 
Nian, J., Wang, P., Gao, H., Guo, X., 2022. A deep learning-based attack on text
CAPTCHAs by using object detection techniques. IET Inf. Secur. 16 (2), 97–110.

Oord, A.v.d., Li, Y., Vinyals, O., 2018. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748.

Shi, B., Bai, X., Yao, C., 2016. An end-to-end trainable neural network for image-based
sequence recognition and its application to scene text recognition. IEEE Trans.
Pattern Anal. Mach. Intell. 39 (11), 2298–2304.

Simonyan, K., Zisserman, A., 2014. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556.

Snell, J., Swersky, K., Zemel, R., 2017. Prototypical networks for few-shot learning.
Adv. Neural Inf. Process. Syst. 30.

Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z., 2016. Rethinking the
inception architecture for computer vision. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition. pp. 2818–2826.

Tang, M., Gao, H., Zhang, Y., Liu, Y., Zhang, P., Wang, P., 2018. Research on deep
learning techniques in breaking text-based captchas and designing image-based
captcha. IEEE Trans. Inf. Forensics Secur. 13 (10), 2522–2537.

Tian, S., Xiong, T., 2020. A generic solver combining unsupervised learning and
representation learning for breaking text-based captchas. In: Proceedings of the
Web Conference 2020. pp. 860–871.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł.,
Polosukhin, I., 2017. Attention is all you need. Adv. Neural Inf. Process. Syst. 30.

Von Ahn, L., Blum, M., Hopper, N.J., Langford, J., 2003. CAPTCHA: Using hard AI
problems for security. In: Advances in Cryptology—EUROCRYPT 2003: Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques,
Warsaw, Poland, May 4–8, 2003 Proceedings 22. Springer, pp. 294–311.

Wang, P., Gao, H., Guo, X., Xiao, C., Qi, F., Yan, Z., 2023a. An experimental
investigation of text-based CAPTCHA attacks and their robustness. ACM Comput.
Surv. 55 (9), 1–38.

Wang, P., Gao, H., Rao, Q., Luo, S., Yuan, Z., Shi, Z., 2021a. A security analysis of
captchas with large character sets. IEEE Trans. Dependable Secure Comput. 18 (6),
2953–2968. http://dx.doi.org/10.1109/TDSC.2020.2971477.

Wang, P., Gao, H., Shi, Z., Yuan, Z., Hu, J., 2020a. Simple and easy: Transfer
learning-based attacks to text CAPTCHA. IEEE Access 8, 59044–59058.

Wang, J., Li, X., Li, J., Sun, Q., Wang, H., 2022. NGCU: A new RNN model for
time-series data prediction. Big Data Res. 27, 100296.

Wang, Y., Wei, Y., Zhang, Y., Jin, C., Xin, G., Wang, B., 2023b. Few-shot learning
in realistic settings for text CAPTCHA recognition. Neural Comput. Appl. 35 (15),
10751–10764.

Wang, Q., Wu, B., Zhu, P.e., Li, P., Zuo, W., Hu, Q., 2020b. ECA-Net: Efficient channel
attention for deep convolutional neural networks. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. pp. 11534–11542.

Wang, W., Xie, E., Li, X., Fan, D.-P., Song, K., Liang, D., Lu, T., Luo, P., Shao, L.,
2021b. Pyramid vision transformer: A versatile backbone for dense prediction
without convolutions. In: Proceedings of the IEEE/CVF International Conference
on Computer Vision. pp. 568–578.

Wang, T., Zhu, Y., Jin, L., Luo, C., Chen, X., Wu, Y., Wang, Q., Cai, M., 2020c.
Decoupled attention network for text recognition. In: Proceedings of the AAAI
Conference on Artificial Intelligence. pp. 12216–12224. http://dx.doi.org/10.1609/
aaai.v34i07.6903.

Wojna, Z., Gorban, A.N., Lee, D.-S., Murphy, K., Yu, Q., Li, Y., Ibarz, J., 2017. Attention-
based extraction of structured information from street view imagery. In: 2017 14th
IAPR International Conference on Document Analysis and Recognition. ICDAR,
http://dx.doi.org/10.1109/icdar.2017.143.

Woo, S., Park, J., Lee, J.-Y., Kweon, I.S., 2018. CBAM: Convolutional block attention
module. In: Computer Vision – ECCV 2018. In: Lecture Notes in Computer Science,
pp. 3–19. http://dx.doi.org/10.1007/978-3-030-01234-2_1.

Xu, X., Liu, L., Li, B., 2020. A survey of CAPTCHA technologies to distinguish between
human and computer. Neurocomputing 408, 292–307.

Yu, Y., Si, X., Hu, C., Zhang, J., 2019. A review of recurrent neural networks: LSTM
cells and network architectures. Neural Comput. 31 (7), 1235–1270.

Yusuf, M.O., Srivastava, D., Singh, D., Rathor, V.S., 2023. Multiview deep learning-
based attack to break text-CAPTCHAs. Int. J. Mach. Learn. Cybern. 14 (3),
959–972.

Zhang, N., Ebrahimi, M., Li, W., Chen, H., 2022. Counteracting dark web text-
based CAPTCHA with generative adversarial learning for proactive cyber threat
intelligence. ACM Trans. Manage. Inf. Syst. (TMIS) 13 (2), 1–21.

Zhang, K., Wu, F., Sun, H., Cai, M., 2023. Monocular vehicle speed detection based on
improved YOLOX and DeepSORT. Neural Comput. Appl. 1–18.

Zheng, T., Chen, Z., Fang, S., Xie, H., Jiang, Y.-G., 2024. CDistNet: Perceiving multi-
domain character distance for robust text recognition. Int. J. Comput. Vis. 132 (2),
300–318.

Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J., 2020. Deformable detr: Deformable
transformers for end-to-end object detection. arXiv preprint arXiv:2010.04159.

Zi, Y., Gao, H., Cheng, Z., Liu, Y., 2019. An end-to-end attack on text captchas. IEEE
Trans. Inf. Forensics Secur. 15, 753–766.


