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A B S T R A C T

Knowledge graph is widely used in intelligent analysis and graph structure applications, which uses triplets to
describe the relations and facts in the real world. In the process of incorporating external triplets into existing
knowledge graph, it is vital to verify the trustworthiness level of triplet knowledge for building a comprehensive
knowledge graph. In this paper, we establish a model for evaluating knowledge graph trustworthiness based
on a triple strategy. The model quantifies the meaning of entities and relations expressed in the knowledge
graph and obtains the quantification of triple trustworthiness measurement. And it integrates the internal
semantic information of triplets and the global information of the knowledge graph, including entity-level,
relation-level, and graph-level trustworthiness measurement, and finally uses multi-layer perceptron fusion to
obtain the final score. This paper analyzes the effectiveness of the model output trustworthiness values and
conducts error detection experiments in five real-world knowledge graph datasets. Experimental results show
that compared with other models, our model has achieved significant effects.
1. Introduction

Knowledge Graphs (KGs), one of the fundamental trends driving the
next generation of technologies, have now evolved into a new form of
knowledge representation and the foundation of a variety of applica-
tions ranging from generic to specific industrial usage cases (Abu-Salih,
2021). They are widely used to describe the relationships between
entities in the real world. Generally, entities serve as nodes and dif-
ferent relationships serve as edges, forming a network with a huge
amount of knowledge (Hogan et al., 2021). Due to the uneven quality
of data sources, the complex logic of semi-structured and unstructured
data, effectiveness of the generated KG construction is affected, it will
inevitably produce some noise errors and conflict triplets and has a in-
fluence on some tasks in the downstream of the KG (Hogan et al., 2021).
Therefore, it is vital to verify the trustworthiness of external triplets
before they have been added to the existing KGs. And it also improves
the quality of constructing KGs and providing reliable and high-quality
kGswith practical application value for its related tasks (Hogan et al.,
2021).

KG is usually composed of triples (ℎ, 𝑟, 𝑡), and its elements refer to
head entity, relation and tail entity. Quantifying the authenticity of
triplets is represented by the probability of trustworthiness. Generally
speaking, the high trustworthiness of the triplet indicates that it is
trusted and relevant to the KG. On the contrary, the low trustworthiness
of the triplet indicates that it is not trusted, which contains head error,
relation error and entity error. By detecting the quality of external
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triples, high-quality triplet knowledge can be discovered to ensure the
quality of the KG, and it can be selected for KG path reasoning and
question answering (Nguyen et al., 2020; Shi et al., 2022).

Recently, some methods construct trustworthiness calculations for
triplets through inherent rules (Heindorf et al., 2016). It is assumed that
the content of the existing triplets are completely correct, which often
leads to significant potential errors, resulting in low fault tolerance
and robustness of the model in prediction trustworthiness (Lin et al.,
2015a). Especially when there is less information about entity rela-
tionships, the effect of trustworthiness testing is further exacerbated.
Therefore, Chen et al. (2021) introduced a confidence prediction model
for Semi-Supervised Learning, which effectively addresses scoring func-
tions associated with various embedding methods. Additionally, they
successfully generated negative samples based on confidence levels. But
how to use appropriate methods to measure triples is a challenging
task (Xie et al., 2018).

The application of graph models in KG is also quite extensive.
The RGCN Schlichtkrull et al. (2018) introduces technique of param-
eters sharing and enforced sparsity constraints, and it is applied in
modeling relation data, demonstrating excellent performance in link
prediction and entity classification tasks. The GAT model Velickovic
et al. (2017) performs attention computations on any nodes in the
graph, calculating features by aggregating neighbor nodes feature.
And the excellent properties of attention mechanism in sentence level
relation and event extraction, long-distance dependency modeling, so
https://doi.org/10.1016/j.engappai.2024.109813
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data mining, AI training, and similar technologies. 
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some researchers Ahmad et al. (2021), Yang et al. (2021) applied the
idea in their tasks. Some feature-based ranking algorithms are also
applied to KGs.

The PageRank (Brin, 1998) algorithm was originally used as a
calculation method for the importance of Internet web pages, and was
used to rank web pages in the Google search engine. The basic idea
of the PageRank algorithm is to define a random walk model on the
directed graph (Lao and Cohen, 2010). That is, a first-order Markov

odular chain, which is used to describe the behavior of random walks
andomly visiting each node along the directed graph. Under certain
onditions, the probability of accessing each node in the limit case
onverges to a flat distribution, then the stable probability value of
ach node at this time is the PageRank value. Similarly, in the KG,
ach entity node also measures the confidence of the triplet through
he importance factor. The PPNP model Klicpera et al. (2019) uses
he personalized PageRank algorithm for semi-supervised learning to
ompute node features. Due to its high computational complexity, some
esearchers have proposed using the APPNP algorithm (Klicpera et al.,

2019) to approximate the computation of PageRank and solve the
features in it, achieving better results on multiple graph datasets.

This paper studies the quality validation of the triplets, and uses the
semantic information contained in the existing KG to build a trustwor-
hiness measurement model combining the multi hop information. The
ontributions of this paper are as follows:

• In this paper, we propose Two-step Approximate Attention Per-
sonalized Propagation of Neural Predictions (named as
TAAPPNP) features extractor for validation of triplets, and it
enhances entity information and improve the construction speed
for KG.

• We propose a relation feature extraction method on Path Graph
GRU Networks (named as PGGN), which directly connected the
relation features between entities, and it enhances the effective-
ness of relation feature extraction.

• The triple combination strategies is proposed as the Triplets Trust-
worthiness with Multi-hop Nodes Model (named as TTMNM),
which contains the TAAPPNP, RGCN and PGGN, the fusion of the
three parts enhances the effectiveness of validation for triplets.

The article unfolds as follows: It commences by elucidating the
rationale and overview of the study on triplet verification, promi-
nently pinpointing three novel contributions that serve to facilitate a
deeper grasp of the domain for the reader. Next, it offers a sweeping
examination of pertinent literature to furnish readers with a robust
contextual foundation. In the third section, we delve into and expound
upon the research motivation of this paper in a comprehensive and
etailed manner. In section four, an in-depth exposition is given on
he computational techniques and theoretical underpinnings of the

triplet verification model, meticulously outlining its design principles
and progressive execution steps. The fifth section carries out extensive
experimentation and evaluation of the model using several openly ac-
cessible web-based datasets, systematically validating and scrutinizing
its effectiveness from various angles. The sixth section sees the practical
application of the model to real-world data drawn from industrial man-
ufacturing contexts, yielding and reporting on the empirical validation
results. Culminating the discourse, we summarize the core findings and
embark upon a reflection on prospective avenues for further research.

2. Motivation

As illustrated in Fig. 1, KGs serve as an efficacious means for
onstructing knowledge bases and play a pivotal role in the pro-
ess of domain-specific knowledge base development. They visualize
ata in a graph format imbued with inherent semantic relationships,
hereby enhancing comprehension and facilitating the utilization of
elevant knowledge resources. The construction process of a domain
G typically encompasses three main stages: Initially, during the data
 m

2 
preprocessing phase, a combination of manual annotation and auto-
mated filtering techniques transforms external unstructured data into
structured datasets that are more amenable to machine interpretation.
Subsequently, this phase is further divided into three steps: Firstly, the
post-preprocessed data undergoes knowledge categorization, culminat-
ing in large-scale datasets categorized into different classes. Secondly,
entity relation extraction is performed on the classified data, furnish-
ing high-quality triplet data for downstream tasks within the KG.
Lastly, the extracted triplets undergo rigorous verification to ensure
they meet the content requirements of the current KG under construc-
tion, ultimately generating a comprehensive and accurate triplet-based
knowledge repository. This paper focuses on the critical issue of verify-
ing new triplets within KGs, expanding the content of existing KGs by
ensuring that freshly derived triplets are consistent with those already
present. Diverging from entity linking tasks, our method targets valida-
tion of triplets produced by entity-relation extraction models, as well
as externally introduced unknown triplets, aiming to ascertain their
logical coherence with the pre-established KG and identify potential
types of triplet errors. To achieve this objective, we first manually
construct a small-scale KG as the preliminary knowledge input for the
model, which is then used to generate feature vectors for evaluating
the credibility of yet-to-be-introduced unknown triplets. By following
this construction process, we eventually develop a more extensive
domain-specific KG.

3. Related work

There are two common methods to build a KG (Ji et al., 2021;
Weikum et al., 2021). The first one involves starting from scratch and
constructing a new KG based on the accumulated data. This method
has the advantage of being quick and easy to scale up. However, due
to the assumption that the knowledge of triplets is correct, there is
no existing knowledge is used as prior information, so it easily leads
to the accumulation of errors in downstream applications. The second

ethod involves updating and augmenting an existing KG with new
ata by inserting related triplet information. This approach can ensure
he completeness and real-time relevance of the existing data while
lso enabling effective utilization of already-existing data. And some
esearchers come up with the bootstrapping method to build a KG (Xiao

et al., 2016). However, ensuring the credibility and rationality of the
dded triplets poses a challenging research topic that warrants further

exploration. Therefore, triplets trustworthiness validation has become
 necessary part of building a KG (Cao et al., 2021). Trustworthiness is

a measure of the credibility of the knowledge to be examined in the
KG, which is a relatively comprehensive dimension that reflects the
objectivity and verifiability of knowledge, especially for quality and
error detection (Sidi et al., 2012). Generally speaking, the credibility
of triplets based on trustworthiness testing is mainly divided into two
categories: one is based on representation learning evaluation, and the
ther is based on combination strategy trustworthiness evaluation.

3.1. Representation learning evaluation

Trustworthiness assessment based on representation learning fo-
cuses on representation learning methods, generally improving the
ccuracy of trustworthiness assessment by mining potential rules and
ntroducing feature information of triples. The translation model based
n distance knowledge representation has become one of the important
ethods for KG validation. The TransE series model (Bordes et al.,

2013; Wang et al., 2014; Lin et al., 2015b; Xiao et al., 2015; Ji et al.,
2015) measures the rationality of the representation of triplets by
alculating the distance between the head and tail entities through
ranslation, nonlinear transformation, and other transformations. Some
cholars have also proposed the CTransE model based on the clustering
odel (Li et al., 2020), which maps to the metric space according
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Fig. 1. The process of constructing domain KG.
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to the rules and relationships between entities to measure the trust-
orthiness of the triple. According to the limitation representations of

TransE, some researchers proposed TorusE (Ebisu and Ichise, 2018)
odel to change the mapping space from ordinary vector space to

ie group to solve the entity representation method. The PTransE
odel Lin et al. (2015a) proposes a path sorting method to construct

a representation learning method in the KG, and applies it to noise
etection tasks. Yet some researchers have proposed to divide the
raining of representation vectors into two steps: first, mapping entities
nto relational spaces, and then constructing translation relationships
n the two projection spaces (Moon et al., 2017). Xie et al. (2020)
roposed a new model named ReInceptionE, which combines the ben-

efits of ConvE (Shang et al., 2019) and KBGAT (Nathani et al., 2019).
It incorporates a relation-aware inception network that utilizes joint
ocal–global structural information for KGE. The model first utilizes
he Inception network to learn query embedding, aiming to further
nhance the interactions between head and relation embeddings. It
hen suggests using a relation-aware attention mechanism to fortify the
uery embedding with local neighborhood and global entity informa-
ion. Some researchers have keenly observed that, earlier models have
ften focused on enhancing the entity representation for multiple rela-

tionships, often overlooking the role of the single relationship vector.
So they introduce TranS (Zhang et al., 2022), a novel transition-based

GE method. By replacing the traditional single relationship vector in
the scoring pattern with a comprehensive relationship representation,
TranS effectively addresses these issues.

3.2. Combination strategy evaluation

Based on combination strategy, trustworthiness is comprehensively
valuated from multiple perspectives, and combination of strategies can

make more comprehensive use of trustworthiness to measure KGs. A
iterature Xie et al. (2018) proposes to combine local confidence, prior

path confidence, and adaptive path confidence to obtain trustworthi-
ess, which enables the model to distinguish noisy triplet data in the
raph and achieve good results. But the researchers (Jia et al., 2019)
ave pointed out that there are two inevitable problems in the KG: (1)
nevitably introducing noise and conflicts during construction; (2) In
he upstream task of KG, the completeness of knowledge assumptions
nevitably introduces potential errors. Due to these two issues, the some
esearcher Jia et al. (2019) comprehensively evaluates the KG from

three aspects: entity-entity, relation-entity, and reachable path strate-
gies. They propose KGTtm (Jia et al., 2019) to validate the knowledge
in the graph, thereby improving the accuracy of representation learning
nd triplets validation. And Zhao and Liu (2019) proposed the SCEF
odel that has the similar structure of KGTtm, they comprehensively

consider three parts: TransE, PRCA, and texture evidence, especially the
mpact of entity representation expansion on triplets validation.
3 
Through the discussion of the above researches, although the model
fully utilizes the internal structural features and constructs more fea-
tures in the graph to verify the confidence of triplets, there are also
problems with slow features construction and less semantic implica-
tions in entities and relations. This article constructs triple combined
confidence evaluation strategy and proposes Triplets Trustworthiness
with Multi-hop Nodes Model (named as TTMNM). We propose a com-
prehensive strategy for evaluating the confidence of triplets that lever-
ages a pre-trained graph to incorporate the features of triplet semantics.
Our model assesses the confidence of triplets by considering triple com-
ination strategies, including entity-entity features within an internal

multi-hop graph, entity-relation features within a relation graph, and
reachable path features within a relation path graph. These different
perspectives collectively contribute to a robust confidence validation
method.

4. Our method

The task of the triplets validation needs to point out whether
the triplet is credible and acceptable. We need to accurately obtain
the trustworthiness value and error types of triples, so we transform
t into a four classification problem rather than simply using trust-
orthiness to indicate whether the triplets is wrong. Given a triplet
ℎ, 𝑟, 𝑡), where ℎ, 𝑡 represent the head entity and tail entity respectively,
nd 𝑟 represents the relation, and the output of TTMNM is classified
nto four categories: triplet correct (TC), head entity error (HE), tail
ntity error (TE), and relation error (RE). The probability indicates
he four categories trustworthiness of the triplet. TTMNM is a triple
ombination strategy graph model, which is divided into three parts:
he first part is to measure the multi-hop features between entities
named as TAAPPNP), the second part is to measure the characteristics
etween entities and relations, the third part measures the features in
elation path (named as PGGN). The following sections will explain
he model structure and its characteristics. And the model structure is
hown in Fig. 2. The symbols used in this chapter are shown in Table 1.

4.1. Input embedding

The input of the model is a batch of triplets. Then the triplets
are transformed into triplet tokens and passed into the embedding
layer, where they are indexed to obtain the triplet embedding vector.

his step facilitates the calculation of features for the triples in graph
recursion. As shown in the upper part in Fig. 2. So we can get the
embedding vector of the triplet (ℎ, 𝑟, 𝑡):
𝑥ℎ = 𝐸ℎ (ℎ)

𝑥𝑟 = 𝐸𝑟 (𝑟) (1)

𝑥𝑡 = 𝐸𝑡 (𝑡)
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Fig. 2. The structure of TTMNM for triplets validation.
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Table 1
Some symbols used in this chapter.

Symbols Meanings

𝐸𝑒 Entity embedding
𝐸𝑟 Relation embedding
𝑥ℎ Head entity features vector
𝑥𝑟 Relation features vector
𝑥𝑡 Tail entity features vector
𝐺 Graph relationships formed by (ℎ, 𝑟, 𝑡) triplets.
𝜋𝑝𝑝𝑟

(

𝑥𝑖
)

Feature vectors calculated through TAAPPNP graph
𝛾𝑖,𝑗 TAAPPNP attention coefficient
𝑐𝑖,𝑟 Normalization parameter of RGCN

4.2. Two-step Approximate Attention Personalized Propagation of Neural
Predictions

This paper considers the relationship between the head-tail and tail-
head entities, and introduces a method of two hops in the entity graph
node to measure the resource flow relationship between entity nodes.
We propose the Two-step Approximate Attention Personalized Propa-
gation of Neural Predictions (TAAPPNP) for entity feature extraction
with two hops. The original APPNP (Klicpera et al., 2019) is defined as
ollows:

𝜋ppr
(

𝑥𝑖+1
)

= (1 − 𝛼)𝐴𝜋ppr
(

𝑥𝑖
)

+ 𝛼 𝑥𝑖 (2)

We apply the idea of two hops. We take 𝑥𝑖, 𝑥𝑖+1 as the initial head
entities starting with two hops, 𝑥𝑖+1, 𝑥𝑖+2 as the tail entities. And then
we update the characteristics of resource flow between the two paths
through approximate calculation. The calculation is expressed in the
following form:
𝜋ppr

(

𝑥𝑖+1
)

= (1 − 𝛼)𝐴𝛼𝜋ppr
(

𝑥𝑖
)

+ 𝛼 𝑥𝑖
𝜋ppr

(

𝑥𝑖+2
)

= (1 − 𝛽)𝐴𝛽𝜋ppr
(

𝑥𝑖+1
)

+ 𝛽 𝑥𝑖+1
(3)

Where 𝛼, 𝛽 respectively represents the first-hop and second-hop
convergence coefficients, and 𝑥𝑖, 𝑥𝑖+1, 𝑥𝑖+2 represents entities features
respectively. We can understand the entire process of two hop node
calculation from the first part in Fig. 2. In KG, first-hop refers to
he head entity, and the second-hop refers to the tail entity. The
lgorithm calculates the resource flow of the head and tail entities with
he entity’s feature representation. The model particularly focuses on
 r

4 
the two-hop relationship between entities to gauge the significance of
resource feature values among them. Within KGs, a one-hop connection
typically signifies a direct link from the head entity to a tail entity;
however, extending to a two-hop relationship allows us to encompass
a broader set of indirectly related tail entities. By considering such two-
hop relationships, we can capture more intricate and global information
flow patterns that reveal deeper structures of resource allocation or
dependencies between entities.

Specifically, in the TAAPPNP framework, entity features undergo
updates during the two-hop propagation process as demonstrated by
he recursive formulas (as seen in Eq. (3)). This process integrates not

only inherent attribute information of the entities themselves but also
those of their immediate neighbors and even second-order neighboring
entities. Thus, the two-hop propagation effectively simulates and quan-
tifies the relative importance of resource flow between entities, refining
the entity feature representations and enhancing the model’s ability to
reason about entity relationships. We can notice that some nodes are
not connected, resulting in multiple subgraphs. Actually, the isolated
nodes do not exist in TAAPPNP (as they are in the form of (head
entity, tail entity)). The node 𝜋𝑝𝑝𝑟(𝑥0) here is the first node entering
the graph neural network, usually randomly selecting any node in the
graph as the entry point for calculating graph features. However, when
we calculate the relationship as the calculation node, there may be
isolated points (mentioned in Section 4.4), and their features will not be
pdated. And this involves a two-hop stage, and we combine the model
ith an attention mechanism to solve this problem. Firstly, for node 𝑥,

alculate the similarity coefficients between its neighbors 𝑗 (𝑗 ∈ 𝑁𝑖) and
tself one by one, and obtain 𝑒𝑖𝑗 through linear transformation layer:

𝑒𝑖𝑗 = 𝜎
([

𝑊𝑖𝜋𝑝𝑝𝑟
(

𝑥𝑖+2
)

||𝑊𝑗𝜋𝑝𝑝𝑟
(

𝑥𝑗+2
)])

(4)

Secondly we calculate the attention coefficient:

𝛾𝑖𝑗 =
exp

(

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈
(

𝑒𝑖𝑗
))

∑

𝑘∈𝑁𝑖
exp

(

𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈
(

𝑒𝑖𝑘
)) (5)

Finally, the formula of the attention calculation is as follows:

𝜋′
ppr

(

𝑥𝑖+2
)

= 𝜎

(

∑

𝑗∈𝑁𝑖

𝛾𝑖𝑗𝑊 𝜋ppr
(

𝑥𝑖+2
)

)

(6)

In particular, when 𝛽 = 0, the model degenerates into APPNP.
he two-hop relationship between entities describes the importance of
esource feature values among entities.
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4.3. Relational Data with Graph Convolutional Networks

To enhance the effect of entity validation, the paper uses Rela-
tional Data with Graph Convolutional Networks(RGCN) to enhance the
effectiveness of data features. RGCN defines a multi-relational graph
message propagation model, in which nodes 𝑣𝑖 are updated as follows

𝑥𝑙+1𝑖 = 𝜎
⎛

⎜

⎜

⎝

∑

𝑟∈𝑅

∑

𝑗∈𝑁𝑟
𝑖

1
𝑐𝑖,𝑟

𝑊 (𝑙)
𝑟 𝑥(𝑙)𝑗 +𝑊 (𝑙)

0 𝑥(𝑙)𝑖
⎞

⎟

⎟

⎠

(7)

Where 𝑁𝑟
𝑖 represents the set of neighbor nodes whose relationship

with node 𝑖 is 𝑟, and 𝑐𝑖,𝑟 is a regularization constant with |

|

|

𝑁𝑟
𝑖
|

|

|

; the
alue of 𝑊 (𝑙)

𝑟 is an explicit conversion function, which converts the
eighbor nodes of the same type using a parameter matrix 𝑊 (𝑙)

𝑟 . From
he middle part of Fig. 2, it can be seen that RGCN aggregates entity

and relation features around nodes and outputs the final entity-relation
features through a linear layer. In the RGCN, the inputs contain (head,
relation, tail) triplets, and this heterogeneous network does not have
isolated nodes.

The key advantage of RGCN is its ability to handle different types
f edges within a graph by incorporating relational information. This
s particularly important when dealing with real-world data, where
ntities are often interconnected in various ways and the relations can
e highly complex. RGCN has been proposed as a useful framework for
andling graph data that includes multiple types of relations, which

enables a more accurate representation of the complex relationships
etween entities in real-world scenarios.

4.4. Path Graph GRU Networks

In order to obtain the information of entity path reasoning, the
GGNN (Velickovic et al., 2017) is used here to obtain the relation
paths information features. We called the layer as Path Graph GRU

etworks (PGGN). This network uses GRU gating to calculate the
feature information between relations in hidden layers:
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

ℎ(1)𝑣 =
[

𝑥𝑇𝑣 , 0
]

𝑎(𝑡)𝑣 = 𝐴𝑇
𝑣∶

[

ℎ(𝑡−1)𝑇1 ,… , ℎ(𝑡−1)𝑇
||

]𝑇
+ 𝑏

𝑧(𝑡)𝑣 = 𝜎
(

𝑊 𝑧𝑎(𝑡)𝑣 + 𝑈𝑧ℎ(𝑡−1)𝑣

)

𝑟(𝑡)𝑣 = 𝜎
(

𝑊 𝑟𝑎(𝑡)𝑣 + 𝑈 𝑟ℎ(𝑡−1)𝑣

)

ℎ̂(𝑡)𝑣 = t anh
(

𝑊 𝑎(𝑡)𝑣 + 𝑈
(

𝑟𝑡𝑣 ⊙ ℎ(𝑡−1)𝑣

))

ℎ𝑡𝑣 =
(

1 − 𝑧𝑡𝑣
)

⊙ ℎ(𝑡−1)𝑣 + 𝑧𝑡𝑣 ⊙ ℎ̂(𝑡)𝑣

(8)

Node 𝑣 first aggregates information from its adjacent nodes, where
𝑇
𝑣∶ is a sub-matrix of the adjacency matrix 𝐴 of the graph, which rep-

esents the connection relationship of adjacent nodes. Similar to GRU’s
update function, it updates the node’s hidden state using information
from each node’s neighbors as well as the previous time step. We
essentially uses PGGN to generate an relations sequence to represent
the characteristics of the relations (edges) path output. Since the output
sequence is related to the feature relationship between each node,
PGGN largely gathers the features of the relation path to enhance the
effect in graph validation. Finally, the output of each node is expressed
as the following form:

𝑜𝑣 = 𝑔
(

ℎ𝑇𝑣 , 𝑥𝑣
)

(9)

From the part of PGGN in Fig. 2, we can see that a relation path
etween no more than four head-tail entities is retrieved from the
raph. In the PGGN, as relationships involve isolated nodes, they are

not subjected to update processing in such cases. These paths are
sequentially arranged to form a relatio path graph, and the relationship
eatures are calculated through PGGN. The graph relationship path
odel locks features from multiple relations nodes, increasing the

ffectiveness of feature output.
5 
4.5. Model fusion layer

The fusion output layer is a core component of the network ar-
chitecture proposed in this study, which integrates multi-dimensional
information extraction and reasoning mechanisms, including multi-hop
reasoning layer between entities, feature extraction layer based on
ntity and relationship features, and relationship path reasoning layer.
uring the training process, the network first utilizes three different

graph neural network models to extract key information from the KG:
For multi-hop reasoning of entities, the TAAPPNP algorithm is used

to process the graph 𝐺 to capture complex multi-level associations
between entities and obtain the multi-hop representation 𝑒𝑠 of entities:

𝑒𝑠 = TAAPPNP(𝐺) (10)

The RGCN algorithm is used to compute on the graph GG to
obtain the context feature representation 𝑒𝑐 for each entity based on
ts adjacency relationships:

𝑒𝑐 = RGCN(𝐺) (11)

The PGGN algorithm is utilized to generate the relationship path
easoning feature 𝑟𝑔 for entities by exploring and utilizing the relation-
hip path information among entities:

𝑟𝑔 = PGGN(𝐺) (12)

After initializing these neural networks, for each triple (ℎ, 𝑟, 𝑡) to be
alidated, the final validation result is computed through the following
teps:

(1) First, combine the above three-dimensional feature vectors of the
query entity into a fusion feature vector:

𝑓 =
[

ℎ𝑠, 𝑡𝑠, ℎ𝑐 , 𝑡𝑐 , 𝑟𝑔
]

(13)

(2) Then, input this fusion feature vector into a multi-layer neu-
ral network FNN, which undergoes nonlinear transformation
mapping to the output space to obtain the prediction:

𝑝 = 𝜎(FNN(𝑓 )) (14)

where 𝜎 is an activation function used to compress the target
output values and ensure they fall within a valid range. FNN is
a three-layer non-linear network, generally defined as follows:

FNN (𝑥) = 𝑊2 ⋅ ReLU
(

𝑊1𝑥 + 𝑏1
)

+ 𝑏2 (15)

In the above expression, 𝑊1, 𝑊2, 𝑏1, 𝑏2 are trainable parameters,
and ReLU is the activation function. The role of the non-linear
function is to integrate the three layers of entity-entity, entity-
relation, and relation-relation relationships and map them into
the classification space.

(3) Since this problem is defined as a four-classification task, where
each sample needs to be classified into one of four categories,
and the probability distribution of each category needs to con-
form to actual semantics, the SoftMax function is used to nor-
malize the prediction values to obtain the final probability dis-
tribution:

𝑠 = softMax(𝑝) (16)

It is defined as a classification problem, and its final outputs are
our categories, and their values represent the probability. The final
oss function uses the cross entropy function to evaluate and update
he gradient of the model:

𝐿
(

𝑠, 𝑠′) = −
𝑆
∑

𝑖=1
𝑠′𝑖 log(𝑠𝑖) (17)

Where 𝑠 represents the probability distribution predicted by the
model, and 𝑠′ is the actual annotated label distribution, with 𝑆 denoting
the total number of classes. By minimizing this loss function, the
model can more accurately learn the complex patterns of relationships
between entities and improve the performance of KG verification based
on this.
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Table 2
The statistical of the datasets.

datasets entities relations triples train/test/valid

FB15K 14, 952 1, 346 1, 184, 426 966, 284/100, 000/118, 142
YAGO3–10 123, 183 38 2, 178, 080 2, 158, 080/10, 000/10, 000
WN18RR 40, 944 12 186, 006 173, 670/6, 068/6, 268
WN18 40, 944 19 302, 884 282, 884/10, 000/10, 000
FB15K-237 14, 542 238 620, 232 544, 230/35, 070/40, 932

5. Experiments

Through this section of experiments, we will verify the accuracy and
onsistency of the constructed KG triplets. The experimental results will

help evaluate the quality and performance of the proposed model in
this chapter, further validating the effectiveness and reliability of the
proposed method. We conducted tests and analyses on different dimen-
sions of the model, and provided detailed discussions on benchmark
testing, ablation experiments, hyperparameter analysis, etc., to provide
experimental evidence and support for the subsequent sections.

5.1. Datasets

This paper uses the different fields of public internet KG triplet
datasets. The detailed information is as follows:

• YAGO (Suchanek et al., 2007): YAGO is an open source dataset
that automatically extracts data from multiple sources such as
Wikipedia, WordNet, and GeoNames. The paper uses the YAGO3-
10 dataset, and it is a subset of YAGO3 (which is an extension of
YAGO), containing entities associated with at least ten different
relations. YAGO3-10 has a total of 123, 182 entities and 37
relations, 1, 179, 040 triples, most of which describe personal
attributes such as citizenship, gender, and occupation.

• FB15K (Bordes et al., 2013): This dataset is a KG extracted
from Freebase, which has abundant network resources, making
FB15K the benchmark dataset as the KG research. FB15K-237 is
a subset of the KG Freebase. In this article, FB15K and its subset
FB15K-237 are used to evaluate the model;

• WN18 (Bordes et al., 2013): This dataset captures approximately
41000 synonymous sets of 18 relationships from WordNet, result-
ing in 141442 triples. Research has found that a large number of
test triples can be found in training sets with another or inverse
relationship. Therefore, a new version of the dataset WN18RR has
been proposed to address this issue.

All corresponding datasets are public available.1 We conducted
statistics on each dataset, and the statistical results are shown in
Table 2. The distribution of different datasets can verify the superiority
nd inferiority of the model.

5.2. Experiment settings

The given datasets contain only positive examples and lacks nega-
tive examples, and the training process requires balancing the dataset
to ensure the generalizability and stability of the dataset, as well
as the accuracy and credibility of the test data, we have performed
error examples generation on different datasets. Due to the presence
of one-to-one, one-to-many and many-to-many scenarios within the
triplets, take it into consideration, we generate errors with different
distributions for each specific dataset. We firstly employ a general
negative example generation method combined with positive example
data to train the model. Consider an relation 𝑟𝑘 that connects head
entities with the number of 𝑁ℎ𝑟𝑘 , and it also connects tail entities with
the number of 𝑁𝑡𝑟𝑘 . For datasets with significant differences in entity
ypes, the generation process is as follows:

1 https://github.com/louisccc/KGppler
6 
• Entity Negative Examples: Each triplet has its negative samples
for its head entity and tail entity. For the same relation, when
𝑁ℎ𝑟𝑘 > 𝑁𝑡𝑟𝑘 , the relation and tail entity are fixed, and the head
entity is randomly replaced. Conversely, when 𝑁ℎ𝑟𝑘 ≤ 𝑁𝑡𝑟𝑘 , the
relation and head entity are fixed, and the tail entity is randomly
replaced. The newly added triples are not the original examples.

• Relation Negative Examples: For each triplet, there is an nega-
tive example of the relation. The head entity and tail entity are
fixed, randomly replace the relation, and the added triples are not
originally example data as well.

We setup several experiments that is trained on a server with
NVIDIA RTX 3090 graphics card, 32 GB of RAM, a 120 GB external
torage, and an i7-11700K intel processor, and we implement the
etwork with PyTorch neural network framework.

This paper has conducted a large number of experiments and used
rid search method to find the optimal model parameters. To ensure

the effectiveness of comparing model training, the default parameter
settings for entity and relation embeddings are set to 50 dimensions.
The convergence iteration count for the graph TAAPPNP algorithm is
set to 10, and its two-hops convergence parameters are set as 𝛼 = 0.65
nd 𝛽 = 0.9. The random weight parameters for dropout rate is set to

0.2. Since the TAAPPNP uses a multi-head graph attention module, the
umber of heads is set to 3 and the output layer dimension is set to 10.
nd the PGGN module is set to 10 layers.

The model presented in this paper is primarily designed to verify
he consistency of triplets extracted after entity relation recognition

with an existing KG. This task bears some resemblance to entity link-
ing, yet its distinct focus lies in its objective: whereas entity linking
aims to establish whether there exist triplet formations that adhere
to factual reasoning, our study is dedicated to assessing the concor-
dance of extracted triplets with a predefined KG. In contrast to entity
linking tasks, which typically involve predicting subject entities (?, 𝑟, 𝑡),
elations (ℎ, ?, 𝑡), or tail entities (ℎ, 𝑟, ?), our research question centers
n determining the accuracy of a given triplet 𝑇 = (ℎ, 𝑟, 𝑡) based on
he content within an established KG 𝐺. The output consists of four
robability scores that reflect the confidence in their trustworthiness.
s a comparative experiment, entity-relation representation methods
re employed to validate the predicted triplets, with experiments incor-
orating four state-of-the-art entity-relation representation techniques
ncluded to demonstrate the thoroughness of the investigation.

5.3. Evaluation metrics

The evaluation of models represents an indispensable facts of the
rocess, this is why we have elected to utilize the benchmark evaluation
riteria prevalent in the realm of deep learning to rigorously measure
he performance characteristics of the model we introduce herein.
his paper adopts an ensemble of key performance indicators: the F1,
ecall, Precision, and Accuracy, all of which contribute to providing a

horough assessment of the model’s overall effectiveness. The details is
s following:

• Recall: It measures the proportion of true positive cases correctly
identified out of all actual positive cases, given by the following
formula:

𝑅 = 𝑇 𝑃
𝑇 𝑃 + 𝐹 𝑃 (18)

• Precision: This metric represents the proportion of correctly pre-
dicted positive cases among those classified as positive, defined
as:

𝑃 = 𝑇 𝑃
𝑇 𝑃 + 𝐹 𝑁 (19)
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• F1: This is the harmonic mean of Precision and Recall, which
provides a single score that balances both the preciseness and
completeness of the classification results. And calculated as:

𝐹1 = 2𝑃 𝑅
𝑃 + 𝑅

(20)

• Accuracy: This is the overall correctness of the classifier, com-
puted as the ratio of the total number of correct predictions (both
true positives and true negatives) to the total number of instances,
expressed as:

𝐴𝑐 𝑐 = 𝑇 𝑃 + 𝑇 𝑁
𝑇 𝑃 + 𝑇 𝑁 + 𝐹 𝑃 + 𝐹 𝑁 (21)

Here, TP represents True Positives,TN represents True Negatives, FP
stands for False Positives, and FN denotes False Negatives. We have
chosen these metrics because they are standard and widely accepted in
the field of machine learning and information retrieval, providing com-
prehensive insight into different aspects of the classifier’s effectiveness.
We will expand upon this section to discuss why each metric is essential
for evaluating our specific research problem and how they collectively
ontribute to the robustness of our findings.

5.4. Experiment results

Through this section’s experiments, we aim to validate the accuracy
and consistency of the KG triples constructed, with the experimental
outcomes contributing significantly to the assessment of the quality
and performance of the model proposed in this chapter. This fur-
ther substantiates the effectiveness and reliability of the presented
method. We have conducted thorough testing and analysis across var-
ious dimensions of the model, delving into detailed discussions on
benchmarking comparation, ablation experiments, and hyperparameter
analyses. These efforts provide solid experimental grounds and support
for the discussions in subsequent chapters.

5.4.1. Benchmarks comparation
In this subsection, the benchmark testing of the model encompasses

three key aspects for an overall comparison of its performance: a com-
parative analysis of the overall models, assessment of the convergence
behavior of the model’s loss, and a comparison of confusion matrices
derived from the model’s predictive outcomes. During the testing phase,
the model is trained using optimal parameters to ensure the most
rigorous performance evaluation.

Overall model comparison. The results as is shown in Tables 3–6.
We compare several common models for triplets validation in KGs,
nd it can be observed that the triplet prediction scores are sig-
ificantly improved due to the triple combination strategy. Such as
rans-Model series, InterHT (Wang et al., 2022), PairRE (Chao et al.,

2021), TranS (Zhang et al., 2022), TripleRE (Yu et al., 2022) and so
on. From the triple strategy, namely: TAAPPNP that reveals two-hops,
RGCN that indicates entity-relation graph and PGGN that extract rela-
tion features. Therefore, the semantic characteristics between entities
and relations are better identified. Compared with other models, the
larger parameter size of our model makes the parameter information
in triplets prediction more sufficient, and it greatly increases amounts
of feature information for prediction, leads to an improvement of
nearly 5%–15% in prediction accuracy, which is shown in Table 3. The
Table 5 represents the precision rate of the model, while the Table 6
reflects the recall rate. It can be observed that in comparison to the
baselines, the precision and recall rates are approximately 15%–20%
igher, indicating that our model has excellent fitting performance.
he F1 score is utilized as an evaluation metric for comprehensive

assessment of the two values. From Table 4, we can see that the
model surpasses the baselines by approximately 5%–20%, leading to
 significant improvement.
7 
Model convergence analysis. This paper meticulously examines the con-
vergence behavior of the model throughout its training progression, as
vividly depicted in Fig. 3. The training trajectory reveals an admirable
degree of convergence for the model at hand. In contrast, alternative
translation models with significantly smaller parameter counts manifest
suboptimal convergence patterns. When juxtaposed against their coun-
terparts operating under identical parameter configurations, the model
presented herein demonstrates a superior convergence performance.
This enhanced convergence efficacy can be attributed, in part, to the
model’s ability to transcend the limitations imposed by linear space
transformations prevalent in comparative frameworks such as TransE
and TransR. These latter architectures, due to their paucity of nonlinear
operations, struggle to adequately accommodate complex, nonlinear
eature computations. The model’s consistent and robust convergence

thus serves as a testament to its inherent reliability. Nevertheless, the
graphical representation also discloses a tendency towards overfitting
when the training regimen extends excessively. This phenomenon is
articularly conspicuous in the case of the TranS model.

Confusion matrix analysis. Confusion matrix reflects the accuracy and
robustness of the model from a visual perspective. We trained and
predicted our proposed model on five datasets using the default optimal
parameters. And we subsequently fine-tuned the negative triplets gen-
ration on this dataset, resulting in better results. The results are shown

in Fig. 4. The ‘‘predict’’ column represents the model’s predicted results,
while the ‘‘real’’ column represents the labeled results of the dataset.
The colors’ intensity represents the corresponding accuracy of the pre-
diction and labeling. From the figure, it can be seen that the prediction
esults perform well for the open datasets FB15K, FB15K-237, WN18,

WN18RR, and YAGO3-10, achieved by generating different types of
negative triplets to balance the training dataset. As shown in Fig. 4,
the deep intensity color in the confusion matrix is concentrated along
the diagonal, therefore it demonstrates the reliability of the model.

5.4.2. Ablation experiments
This paper conducts ablation experiments, as shown in Tables 7,

8, 9, 10. The ablation experiments compare the performance of the
overall model with that of each strategy condition on triplets validation.
From the overall perspective, the accuracy of the model shows better
prediction performance under the triple strategy situation. Compared to
the single TAAPPNP strategy, the performance of the combined strategy
increased by 13.56%, 7.41%, 7.83%, 14.16%, and 7.49% on the five
datasets, respectively; Compared with the RGCN strategy, the perfor-
mance of the combination strategy has been improved by 12.96%,
1%, 29.7%, 9.25%, and 5.32%, respectively; However, compared to
the PGGN strategy, for YAGO3-10, the F1 score of the combination
strategy decreased by 2.22%, while other datasets increased by 0.37%,
16.6%, 4.28%, and 2.76%, respectively. For the YAGO3-10 dataset, the
prediction performance is actually better under the relation-relation
single strategy condition. This indicates that the PGGN provides better
features under the triple strategy.

5.4.3. Hyperparameters analysis
TAAPPNP layer iteration effects. This article discusses the impact of the
number of iterations in TAAPPNP layer inference. The number of iter-
ations represents the convergence of features during the resource flow
rocess. We conducted a convergence analysis of the corresponding
umber of iterations on five datasets, and the experimental results are
hown in Fig. 5. The results show that for open-domain datasets FB15K

and FB15K-237, the best performance is achieved when the number of
iterations 𝑁 reaches at 50–70, but when for the subset FB15K-237, the
est performance is achieved at N = 30. For specific domain data, such
s YAGO3-10 datasets, the best performance is achieved at N = 10,

however, too many iterations may not achieve in good results. For the
WN18RR and WN18 datasets, it is evident that the peak is reached at N
= 50. The experimental results indicate that the number of iterations in
the resource flow algorithm has a significant impact, and for different
datasets, the number of iterations in the resource flow has an optimal
peak, which leads to the best model prediction performance.
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Table 3
The accuracy score prediction of model.

dataset YAGO3-10 FB15K FB15K-237 WN18 WN18RR

TransD (Ji et al., 2015) 0.8551 0.8311 0.7951 0.6375 0.4448
TransE (Li et al., 2020) 0.8699 0.8141 0.7802 0.6193 0.4395
TransH (Wang et al., 2014) 0.8776 0.8359 0.7858 0.5799 0.4357
TransR (Lin et al., 2015b) 0.8699 0.8155 0.7841 0.6361 0.4326
InterHT (Wang et al., 2022) 0.8739 0.8136 0.7726 0.6197 0.4423
PairRE (Chao et al., 2021) 0.8978 0.8941 0.8818 0.6487 0.4459
TranS (Zhang et al., 2022) 0.8801 0.8495 0.8074 0.6389 0.4271
TripleRE (Yu et al., 2022) 0.8957 0.8838 0.8603 0.7205 0.4511
TTMNM(Ours) 0.9117 0.9107 0.8924 0.7775 0.5393
Table 4
The F1 score prediction of model.

dataset YAGO3-10 FB15K FB15K-237 WN18 WN18RR

TransD (Ji et al., 2015) 0.8124 0.8219 0.7854 0.6221 0.3302
TransE (Li et al., 2020) 0.8112 0.8015 0.7711 0.5973 0.3366
TransH (Wang et al., 2014) 0.8339 0.8253 0.7675 0.5454 0.3261
TransR (Lin et al., 2015b) 0.8237 0.8029 0.7721 0.6164 0.3218
InterHT (Wang et al., 2022) 0.8305 0.8011 0.7644 0.5995 0.3353
PairRE (Chao et al., 2021) 0.8597 0.8837 0.8719 0.5949 0.3278
TranS (Zhang et al., 2022) 0.8225 0.8363 0.7873 0.6041 0.3236
TripleRE (Yu et al., 2022) 0.8541 0.8737 0.8475 0.7009 0.3573
TTMNM(Ours) 0.8628 0.9012 0.8819 0.7712 0.4531
Table 5
The precision score prediction of model.

dataset YAGO3-10 FB15K FB15K-237 WN18 WN18RR

TransD (Ji et al., 2015) 0.8201 0.8235 0.7894 0.6241 0.3479
TransE (Li et al., 2020) 0.7879 0.8022 0.7801 0.6052 0.3486
TransH (Wang et al., 2014) 0.8241 0.8308 0.7861 0.5571 0.3313
TransR (Lin et al., 2015b) 0.8066 0.8037 0.7802 0.6282 0.3645
InterHT (Wang et al., 2022) 0.8139 0.8038 0.7727 0.6064 0.3428
PairRE (Chao et al., 2021) 0.8414 0.8888 0.8735 0.6193 0.3374
TranS (Zhang et al., 2022) 0.8042 0.8435 0.7995 0.6226 0.3274
TripleRE (Yu et al., 2022) 0.8335 0.8787 0.8508 0.7039 0.3597
TTMNM(Ours) 0.8415 0.9066 0.8819 0.7767 0.4564
Table 6
The recall score prediction of model.

dataset YAGO3-10 FB15K FB15K-237 WN18 WN18RR

TransD (Ji et al., 2015) 0.8062 0.8204 0.7822 0.6213 0.4367
TransE (Li et al., 2020) 0.8511 0.8009 0.7666 0.5932 0.4578
TransH (Wang et al., 2014) 0.8511 0.8215 0.7552 0.5388 0.4175
TransR (Lin et al., 2015b) 0.8489 0.8021 0.7676 0.6099 0.4478
InterHT (Wang et al., 2022) 0.8573 0.7985 0.7615 0.5954 0.4628
PairRE (Chao et al., 2021) 0.8914 0.8807 0.8724 0.5869 0.4296
TranS (Zhang et al., 2022) 0.8595 0.8309 0.7784 0.5948 0.4436
TripleRE (Yu et al., 2022) 0.8971 0.8696 0.8448 0.6993 0.4672
TTMNM(Ours) 0.9054 0.8969 0.8825 0.7678 0.5533
Table 7
The f1 score of the model ablation.

FB15K YAGO3–10 WN18RR WN18 FB15K-237

TAAPPNP:A 0.7681 0.7181 0.6746 0.6283 0.8048
RGCN:B 0.7741 0.7912 0.4559 0.6774 0.8265
PGGN:C 0.9000 0.8144 0.5869 0.7320 0.8570
TTMNM (A+B+C) 0.9037 0.7922 0.7529 0.7699 0.8797

Table 8
The accuracy score of the model ablation.

FB15K YAGO3–10 WN18RR WN18 FB15K-237

TAAPPNP:A 0.7787 0.8865 0.6836 0.6403 0.8155
RGCN:B 0.7837 0.8624 0.5411 0.6843 0.8371
PGGN:C 0.9100 0.8677 0.6376 0.7342 0.8611
TTMNM (A+B+C) 0.9124 0.9097 0.7599 0.7770 0.8887
8 
Table 9
The precision score of the model ablation.

FB15K YAGO3–10 WN18RR WN18 FB15K-237

TAAPPNP:A 0.7613 0.9164 0.6849 0.6407 0.8100
RGCN:B 0.7672 0.8879 0.5424 0.6774 0.8310
PGGN:C 0.9024 0.8306 0.6175 0.7462 0.8587
TTMNM (A+B+C) 0.9079 0.9341 0.7564 0.7798 0.8824

Table 10
The recall score of the model ablation.

FB15K YAGO3–10 WN18RR WN18 FB15K-237

TAAPPNP:A 0.7810 0.7010 0.6698 0.623 0.8014
RGCN:B 0.7873 0.7843 0.4604 0.6846 0.826
PGGN:C 0.8993 0.8022 0.5927 0.7297 0.8559
TTMNM (A+B+C) 0.9011 0.7571 0.7497 0.7649 0.8777
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Fig. 3. TTMNM loss during training.
Fig. 4. TTMNM confusion matrix.
The effect of attention heads. The number of heads affects the feature
extraction capability of the attention matrix, which in turn affects the
F1 score of the final results. Therefore, this section focuses on studying
the impact of different numbers of heads on the model’s prediction
9 
ability. We conducted experiments on five datasets and set 𝑁ℎ =
1, 2, 3, 4, 5 to investigate the influence of the number of attention heads
on the model’s performance, the variation of F1 score is shown in Fig. 6.
From the figure, it can be observed that each dataset corresponds to
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Fig. 5. TAAPPNP iteration analysis.
Fig. 6. Heads number of TAAPPNP analysis.
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a peak value of F1 score. Analyzing the figure, it can be determined
hat the optimal number of attention heads for the five datasets is
𝑁ℎ = 4, 4, 2, 3, 3, respectively. This is due to the different characteristics
of distribution exhibited by each dataset resulting in different peak
results. The experiments demonstrate that the number of attention
heads significantly affects the prediction results, but there always exists
a corresponding peak value.

The effect of PGGN layers. The number of layers in the PGGN deter-
mines the level of relation feature extraction. Here, we demonstrate this
point through several experiments. We conducted comparative analysis
experiments on five datasets, where we set the number of layers in
the PGGN as 𝑁𝑙 = 2, 4, 6, 8, 10, 12, 14, 16, 18, 20. We plotted box plots to
compare the model’s predictive performance, and the variation of F1
score is shown in Fig. 7. From the data in the figure, it can be seen that
he model’s predictions are changed as the number of layers change,
 h

10 
but there is always an optimal peak with best performance. For FB15K
nd FB15K-237, there is a smooth change in F1 score as the number of
ayers increases. For WN18RR, WN18, and YAGO3-10, there are more
luctuating changes in F1 score, but each dataset has a corresponding
eak at a different position. It can be observed that the optimal number
f layers for the five datasets are 𝑁𝑙 = 12, 12, 8, 12, 16, respectively. The

characteristics of the datasets distribution determine the differences in
peak values. The experiment proved that the number of PGGN has an
impact on the predicted score of the model to some extent.

5.5. Discussion

The distribution of the dataset has a significant impact on model
raining and prediction results. The generation of negative examples
as a significant effect on the test sets of FB15K, FB15K-237, and



G. Zhang et al. Engineering Applications of Artiϧcial Intelligence 141 (2025) 109813 
Fig. 7. PGGN layers analysis.
YAGO3-10 datasets in open domain scenarios. Because these datasets
have a large number of relationships and significant differences be-
tween entity relationships, this method of generating negative examples
is suitable for such datasets. For the WNRR datasets, the performance
is moderate and also shows good results. However, for the WNRR18
dataset, there is a significant variation in performance. The relation
prediction is relatively accurate, but there are errors in predicting the
head and tail entities, which shown in Fig. 4(d). Based on the predicted
results and labels of the data, as well as the semantic information, it can
be seen that the inaccurate prediction of the head and tail entities is
due to the existence of semantically similar phenomena in the WNRR18
dataset. In response to this issue, we have improved the negative
example generation algorithm in our industrial datasets application.
Specifically, we have modified the random entity replacement method
used in the previous negative example algorithm to replace head and
tail entities of different semantic types. This modification has led to the
creation of prominent negative example data. By comparing statistics,
it was found that there has been a significant improvement in the
test results of generating negative examples using the above dataset.
This negative case generation algorithm performs well when applied to
industrial datasets.

6. Application

In this paper, we also apply our method to KG triplets validation
in the industrial manufacturing domain. Due to the issues of missing
and duplicated data sets in the industrial field, we extracted corpus
from the text data of industrial manufacturing to provide data for KG
triplets trustworthiness validation. We used the CasRel (Wei et al.,
2020) model to perform entity-relation joint extraction on the collected
industrial dataset, and obtained KG triplets dataset. Since there were
errors in the extracted dataset, we manually checked and filtered the
data, finally we get the KG corpus in a total of 10, 869 triples in the KG
dataset, containing 6, 200 entities and 4 relations. Based on its inherent
characteristics, we classified it into three datasets: train set, validation
set, and test set, with a ratio of 6:1:1. Following the method mentioned
in the previous section, we changed the way of replacing entities. The
data distribution is shown in Fig. 8.

The model comparison is as shown in Table 11. Through the com-
parison of models, it can be seen that the model mentioned in this
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Table 11
The model comparison.

Model F1 Accuracy Precision Recall

TransD (Ji et al., 2015) 0.4755 0.6251 0.4974 0.4744
TransE (Li et al., 2020) 0.5542 0.7381 0.5482 0.5621
TransH (Wang et al., 2014) 0.4588 0.6005 0.4682 0.4564
TransR (Lin et al., 2015b) 0.5233 0.6941 0.7607 0.5281
InterHT (Wang et al., 2022) 0.5564 0.7395 0.5515 0.5633
PairRE (Chao et al., 2021) 0.4897 0.6463 0.5495 0.4922
TranS (Zhang et al., 2022) 0.5141 0.6821 0.5096 0.5193
TripleRE (Yu et al., 2022) 0.5541 0.7373 0.7914 0.5616
TTMNM (Ours) 0.7110 0.7455 0.7506 0.7294

paper has the best performance, especially in terms of recall, precision,
and F1 score. Compared to the baselines, the overall performance is
improved by approximately 10%–20% The results demonstrates that
the model has a good predictive effect in the field of industrial KGs
triplets validation.

Confusion matrix further verifies and demonstrates the accuracy and
robustness of the predicted results. It has good adaptability to KG data
in the industrial field, as shown with the visualization in Fig. 9. It can
be seen that the prediction is more accurate for relation errors and tail
entity predictions, but weaker for head entities. The main reason is that
the proportion of negative triples for head entities is not appropriate,
which leads to a weaker prediction. The results of our proposed method
are excellent for industrial datasets with incomplete data and weak
entity with relation.

In the case studies detailed within Table 12, we thoroughly in-
vestigate the model’s performance across numerous instances within
an industrial dataset. The table presents eight illustrative examples,
wherein ‘Head’ refers to the source entity, ‘Relation’ signifies the inter-
entity relationship, and ‘Tail’ denotes the target entity. The ’Real Tag’
column specifies the actual error categories, including true classifi-
cations (Triple Correct, TC), head entity errors (Head Entity Error,
HE), relationship errors (Relationship Error, RE), and tail entity er-
rors (Tail Entity Error, TE). The ‘Pred Tag’ column reflects the error
type predicted by the model, each entry further accompanied by a
color-coded score indicative of the model’s prediction confidence, with
deeper hues denoting lower confidence. The table shows that the model
largely provides accurate predictions for triples like (Gear, part_of,
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Fig. 8. The dataset distribution.
Table 12
The cases of the industrial dataset.

Heads Relation Tail Real Tag Pred Tag TC HE RE TE

Gear part_of Servo motor assembly TE TE (✓) 0.02 0.05 0.12 0.81
Iron core grounding wire part_of Bolt TE TC (✗) 0.56 0.02 0.01 0.41
Left A-pillar part_failure Smoke TC TC (✓) 0.41 0.12 0.12 0.35
Button ‘‘AUTO’’ part_of Stuck RE RE (✓) 0.09 0.17 0.63 0.11
Right-front wheel part_failure Noise TC TC (✓) 0.81 0.05 0.12 0.02
Sunroof part_failure Not working properly TC HE (✗) 0.27 0.66 0.03 0.04
First time airbag light attr_failure Alarm RE RE (✓) 0.01 0.03 0.91 0.05
Throttle valve part_failure Striped deformation TE TC (✗) 0.55 0.03 0.03 0.39
Fig. 9. The confusion matrix.

Servo motor assembly), (First time airbag light, attr_failure, Alarm),
and (Button ‘‘AUTO’’, part_of, Stuck), which are logically consistent
and backed by higher confidence scores. Nevertheless, it demonstrates
less robust predictive ability for triples characterized by ambiguous
definitions, e.g., (Iron core grounding wire, part_of, Bolt), (Left A-
pillar, part_failure, Smoke), and (Throttle valve, part_failure, Striped
deformation). Notably, there are isolated occurrences where triples
that adhere to knowledge graph conventions are incorrectly classified
as errors, exemplified by (Right-front wheel, part_failure, Noise). This
12 
shortcoming stems from the challenge in semantic interpretation when
faced with triples entailing multiple complex relationships, thus re-
ducing predictive efficacy. This case study underscores that while our
model generally demonstrates robust capacity in discerning accurate
error types in most situations, it occasionally struggles to differentiate
between closely-related yet discrete errors, particularly those involv-
ing head and tail entities. These findings point to potential areas
for enhancement, specifically in managing the complexities inherent
in triple representations within industrial knowledge graphs, where
relationships may be more nuanced and contextually dependent.

7. Conclusion

In this paper, we proposes a method for KG triplets validation,
which combines a triple-based strategy that contains the TAAPPNP,
RGCN, and PGGN. It achieves good results on both open-domain
datasets and industrial KG datasets. Through comparative experiments
in various aspects such as model comparison, parameter analysis,
and dataset comparison. Compared to the baselines, our TTMNM in
this article has improved by about 5%–15% in F1 scores. It can be
concluded that the proposed model in this paper has good applicability
and suitability. In particular, TAAPPNP and PGGN plays a crucial role
in graph reasoning algorithms. In future work, we will apply this
algorithm to various downstream tasks of different KGs for inference
and application. The distribution of the dataset also has very different
predictive effects on the model, and future work will also include
improvements to the negative example data generation algorithm.
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