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Chain-of-Thought (CoT) Prompting is the dominant paradigm applied in Large Language
Models (LLMs) to enhance their capacity for complex reasoning. It guides LLMs to demonstrate
the problem-solving process through a chain of reasoning steps, rather than requiring LLMs
to generate the final answer directly. Despite its success, CoT encounters difficulties when key
information required for the reasoning process is either implicit or missing. It primarily stems
from the fact that CoT emphasizes the stages of reasoning, while neglecting the critical task
of gathering and extracting essential core information in the early stage. In this paper, we
propose a pre-prompting methodology called Iterative Summarization Pre-Prompting (ISP2),
which can effectively refine the reasoning ability of LLMs when key information is not explicitly
presented. First, entities and their corresponding descriptions are extracted to form potential
key information pairs from the question. Next, we introduce the reliability rating to assess the
reliability of these information pairs. Then, two information pairs with the lowest rankings
through the reliability rating are merged into a new potential information description, which
includes a new entity and its corresponding description. This process is applied iteratively to
guide the generation of a unique information pair. Finally, the obtained key information pair,
along with the original question, is fed into LLMs for reasoning, resulting in the final answer.
Extensive experiments are conducted to validate the effectiveness of the proposed method. The
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results show that, compared to existing methods, our approach yields a 7.1% improvement
in performance. In summary, unlike traditional prompting methods, ISP2 adopts an inductive
approach with pre-prompting. It demonstrates good plug-and-play performance and can theoret-
ically be applied to improve performance across all reasoning frameworks. The code is available
at: https://github.com/zdhgreat/ISP-2.

1. Introduction

Large Language Models (LLMs) have made significant strides in Natural Language
Processing (NLP) tasks, such as question answering, automatic summarization, and
machine translation (Achiam et al. 2023; Chowdhery et al. 2024; Touvron et al. 2023a,b;
Huang et al. 2023; Zhao et al. 2023). However, despite these advancements, LLMs still
fall short in reasoning performance compared to humans. Increasing model parameters
cannot close the gap in reasoning capabilities between LLMs and human intelligence.
Chain-of-Thoughts (CoT) Prompting is a crucial technique for enhancing the reasoning
capabilities of LLMs. It guides LLMs to break down complex reasoning into simpler
steps, a process similar to human reasoning. CoT uses prompts such as "let’s think
step by step" (Kojima et al. 2022) and multiple learnable examples (Wei et al. 2022)
to generate interpretable prediction paths. It has made LLMs excellent zero-shot and
few-shot reasoners, paving the way for tackling complex problems. When faced with
more complex problems, CoT prompting methods often fail to address them effectively.
During the reasoning process, some information is often overlooked, which results in
unclear guiding strategies and ultimately impacts the quality of the answer.

Simon (1978)’s theory provides valuable insights to better understand and solve
problems. First, individuals gather key information from the context of the problem and
use it to construct the problem space. Then, with an understanding of the current infor-
mation, they use heuristic strategies to summarize and refine their thoughts, gradually
approaching the solution to the problem. Building upon Simon’s foundational work
in information processing theory, this paper applies these concepts to the reasoning
of LLMs and introduces Iterative Summarization Prompting (ISP2). It leverages the
inherent knowledge of LLMs to develop precise descriptions of specific problem spaces.
Specifically, ISP2 is a pre-prompting method applied before CoT, allowing the LLMs
to summarize more comprehensive knowledge to assist in reasoning. In Figure 1, we
illustrate the workflow differences between standard prompting and the pre-prompting
method. It coordinates three key LLM steps: adaptive extraction of candidate informa-
tion, reliability rating of information pairs, and iterative summarization for knowledge
understanding. These steps include summarizing and integrating relevant information,
as well as formulating strategies before tackling intricate real-world reasoning tasks.
By engaging in these pre-prompting steps, LLMs can better explore and understand
the nuances of complex problems, thereby improving their ability to perform sophisti-
cated reasoning. Testing with GPT-3.5 Turbo shows that inserting ISP2 before CoT and
Complex CoT leads to a significant performance improvement, with increases of 7.1%
and 8.1%, respectively. The average performance score of ISP2 with CoT reaches 79.43,
surpassing other SOTA methods with plug-and-play capabilities. In these processes and
results, our main contributions are as follows:

• We introduce a pre-prompting method that can be seamlessly integrated
into various CoT methods to enhance their reasoning performance.
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Context Input

Q: There are 96 fourth-graders at Small Tree School. 43 of
them are girls. On Friday, 5 fourth-grade girls and 4 fourth
grade boys were absent. How many fourth grade boys were at
Small Tree School on Friday?

Last answer: There were 96 fourth-graders at Small Tree
School. 43 of them were girls. On Friday, 5 girls and 4
boys were absent. So there were 43 - 5 = 38 girls at
school on Friday, and 96
38 = 58 boys at school on Friday. The answer is 58.

A: We know the Answer Hints: 58. With the Answer Hints:
58, we will answer the question. Let's think step by step.

Q: There are 96 fourth-graders at Small Tree School. 43 of
them are girls. On Friday, 5 fourth-grade girls and 4 fourth
grade boys were absent. How many fourth grade boys were at
Small Tree School on Friday? 

IP:start Friday and student attendance
1. Small Tree School has 96 fourth-graders, consisting of
43 girls and 53 boys.
2. On Friday, 5 girls and 4 boys are absent, leaving 87
students present.
3. 38 girls and 49 boys are present at Small Tree School
on Friday, for a total of 87 students attending. 

A: Let's think step by step.

Context Input

Question Candidate Answer
———
———— ——
——— ———

———
———— ——
——— ———

Prompt

Answer

(a) Prompting

Judgment

Question
———
———— ——
——— ———

———
———— ——
——— ———

Pre-Prompt Information Pair

(b) Pre-Prompting

Answer

Prompt

Figure 1: The difference between prompting and pre-prompting. Conventional prompt-
ing focuses on providing reinforcement during the inference process to guide the
model’s reasoning. In contrast, pre-prompting enriches the input context prior to rea-
soning, ensuring that the model has a more comprehensive and refined understanding
from the outset.

• We extend information extraction to iterative generation and reliability
rating, creating a new process for step-by-step information integration in
complex scenarios.

• ISP2 demonstrates robustness, performing exceptionally well across
diverse models, including GPT-3.5 Turbo and open-source LLaMA2,
proving its effectiveness in various reasoning environments. Furthermore,
it achieves top performance among SOTA plug-and-play methods.

2. Related Work

2.1 Chain-of-Thoughts Prompting

Wei et al. (2022) emphasize the importance of deriving conclusive answers through
multi-step logical pathways by introducing the concept of Chain-of-Thoughts (CoT)
reasoning. The method demonstrates that reasoning abilities can be elicited through
a series of thoughtful steps. Kojima et al. (2022) discover that simply adding the phrase
"let’s think step by step" in prompts allows LLMs to perform zero-shot logical reasoning
without any additional human prompts. Subsequently, Wang et al. (2023) introduce Self
Consistency (SC) to replace the greedy decoding strategy. Zhang et al. (2023) construct
an automatic CoT framework based on the problem, eliminating the instability of man-
ual prompts. Fu et al. (2023) employ complexity-based multi-step reasoning estimation
to execute CoT. Yao et al. (2024) propose Tree-of-Thoughts (ToT), which introduces
deliberation into decision-making by considering multiple reasoning paths. Xu et al.
(2024) enhance the model’s understanding by re-reading the question. These studies
underscore the importance of CoT in enhancing the reasoning and planning capabilities
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of LLMs in complex scenarios. Despite, CoT still requires further refinement in complex
scenarios involving more complex problems.

2.2 In-Context Learning

In-context learning (ICL) enables LLMs to make predictions based on input examples
without updating model parameters. Brown et al. (2020) introduce this concept in GPT-
3, demonstrating that LLMs can generalize tasks from a small number of examples
embedded in the input context. Min et al. (2022) propose Meta-training for In-Context
Learning (MetaICL), which significantly enhances ICL capabilities through continuous
training on various tasks using demonstrations. Additionally, the concept of supervised
context training(Chen et al. 2022) is proposed to bridge the gap between pre-training
and downstream ICL tasks. LLM refines its prior knowledge through ICL, thereby
improving performance across multiple tasks (Krishnamurthy et al. 2024). ICL allows a
single model to perform various tasks universally, helping it better align its predictions
with the semantic requirements of the prompts.

2.3 Task Decomposition

Perez et al. (2020) decompose complex problems into several independent subproblems
by the LLMs, and then aggregates the answers to form the final response. Wang, Deng,
and Sun (2022) address problems by modeling prompts as continuous virtual tokens
and iteratively eliciting relevant knowledge from a LLM. Yang et al. (2022) decompose
normal questions into a series of subproblems, which are then converted into SQL
queries using a rule-based system. Wu, Terry, and Cai (2022) introduce the idea of
linking LLM steps, where the output of one step becomes the input of the next, and
developed an interactive system for users to build and modify these chains. Zhou
et al. (2023) argue that generated subproblems are often interdependent and need to
be solved in a specific order, with the answers to some subproblems serving as the
foundation for others. They propose the Least-to-Most Prompting method, which links
the problem decomposition process to the solving of subproblems. Zhang et al. (2024)
propose the Cumulative Reasoning (CR), breaking down complex tasks into smaller
manageable steps and utilizing iterative collaboration among three different LLMs to
incrementally solve problems.

2.4 Self Evaluation

Researchers have proposed automated evaluation methods, such as Sentence-BERT
(Reimers and Gurevych 2019) and SimCSE (Gao, Yao, and Chen 2021), to assess the
reasoning process. However, these methods primarily concentrate on matching individ-
ual words and phrases, which limits their ability to fully assess the logical consistency
and deeper meaning of the context. To address these limitations, the feasibility of using
LLMs to evaluate their own predictions is becoming an increasingly important step
in problem-solving. Shinn et al. (2023), Madaan et al. (2024) and Paul et al. (2024)
introduce the Self Evaluation (SE) mechanism, where LLMs provide feedback on the
candidate answers they generate. Chen et al. (2024) improves LLM code generation
accuracy by using self-generated feedback. Similarly, Kim, Baldi, and McAleer (2024)
introduce a review step to evaluate actions and states in operational tasks and decide
the next steps. In terms of reasoning, Yao et al. (2024) emphasize SE guided decoding,
where the LLM uses carefully designed prompts to evaluate candidate answers via
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Information Pairs List

Summary

(a) Adaptive Extraction of Candidate Information

(c) Iterative Summarization for Knowledge Understanding

Iterate

Reliability Rating

Question

Output (if n = 1)

Final Information Pair

Insert

Select (if n > 1)

New Imformation Pair

New Score

(b) Reliability Rating of Information Pairs

IP1

IP2

IPn

...

IP1
IP List

Score1

IP2
IP List

Score2

IPn

IP List

Scoren

... ...

Information Pairs List

IP1

IP2

IPn

...

IPa

IPb

IP

IPnew

Score List

Score List

Figure 2: An illustrative example of the Iterative Summarization Pre-Prompting (ISP2)
workflow. ISP2 starts by obtaining an initial set of explicit information pairs based on the
current question. It then iteratively refines the description of the problem space through
a reliability scoring mechanism and iterative summarization, ultimately arriving at the
final answer with the help of fundamental prompts.

a tree search procedure. Kumar et al. (2024) explore facilitate scalable self-reflection
in LLM, demonstrating its effectiveness in improving student learning outcomes. By
incorporating fair assessment in LLM learning, our approach injects the reflection
mechanism into problem space understanding rather than just evaluating candidate
answers, allowing for deeper consideration of the problem and focusing more on the
essence of the problem. We believe that reasoning based on a thorough understanding
of information leads to further refinement and improvement.

3. Proposed Approach

The key to problem-solving lies in thoroughly understanding the problem and inte-
grating important information based on the context. The process of understanding
involves not only identifying the key parts that contain the answers but also clearly
representing the problem space. The deep understanding helps reduce cognitive load
and accelerates the process of finding answers. In this work, we enhance reasoning
by constructing knowledge representations of the problem space, grounded in a thor-
ough understanding of the question at hand. As illustrated in Figure 2, we propose
Iterative Summarization Pre-Prompting (ISP2), a plug-and-play pre-prompting method
that operates in three steps: adaptive extraction of candidate information, reliability
rating of information pairs, and iterative summarization for knowledge understanding.
Throughout the progressive process, the LLM continuously enhances its understanding
of the information, thereby more effectively exploring and solving problems.
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3.1 Adaptive Extraction of Candidate Information

LLMs demonstrate distinct advantages over traditional machine learning methods in
extracting and synthesizing complex information, thanks to their sophisticated architec-
tures and extensive training on broad datasets (Schacht, Kamath Barkur, and Lanquillon
2023). Given the strong information extraction capabilities, we leverage the LLM to
extract multiple entities E under the question Q. To effectively understand a problem,
it is crucial to gather all relevant information related to the question as candidates. The
comprehensive collection of potential information forms the foundation for subsequent
deepening of understanding. During the extraction process, not all entities maintain a
high degree of relevance to Q. Therefore, we design prompts and provide sufficient
examples to guide the LLM. It allows the LLM to learn from the examples in the
prompt T and effectively retain the n entities E = {(ei)}ni=1 that are highly relevant
to the question. For each entity, the LLM summarizes the knowledge descriptions K =
{ki1, ki2, . . . , kit}ni=1 that are related to it. The entities and their corresponding knowl-
edge descriptions are organized into information pairs IP = [ei, {ki1, ki2, . . . , kit}]ni=1.
Each information pair focuses on summarizing explicit knowledge in the question,
laying the groundwork for deeper analysis. Meanwhile, we do not specify the number
of entities or knowledge descriptions due to the varying amount of extracted informa-
tion for each question. This flexible approach ensures that the LLM can adapt to the
specific requirements of different problems, continuously enhancing its understanding
and refining its outputs.

3.2 Reliability Rating of Information Pairs

Inspired by the recent success of Self Evaluation (Kadavath et al. 2022), we introduce an
automated evaluation method called reliability rating. A key aspect of understanding
lies in uncovering potentially lost information, and reliability rating plays a crucial role
in this process. Reliability rating not only assesses the potential of each information pair
to contribute effectively to problem-solving but also evaluates the completeness of the
candidate information. It evaluates the current information pair IPt by considering all
previously generated information pairs IP1:n. We define the value of each information
pair using the function V (IPt):

V (IPt) ∼ p(v | T,Q, IP1:n), (1)

which quantifies its contribution to solving the problem while ensuring the integrity of
the information. Importantly, a lower reliability score for an information pair indicates
a higher likelihood of missing critical information. The low-scored pairs are prioritized
for early inclusion in the iterative summarization process, allowing for the gradual
supplementation of missing details through successive iterations. By evaluating the
potential and completeness of each information pair, the method refines and prioritizes
the information used in the summarization process, thereby enhancing the overall effec-
tiveness and accuracy of the solution. where the prompts T for evaluating information
pairs are divided into two types:

• Scalar Value Prompt: Directly prompts the LLM to output a scalar value v
(ranging from 0 to 1).
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Imformation Pairs

White fiber
1. The amount of white fiber needed for the robe.
2. The robe requires half the amount of white fiber compared to blue fiber.
3. The robe requires 1 bolt of white fiber.
Blue fiber
1. The amount of blue fiber needed for the robe.
2. The robe requires 2 bolts of blue fiber.
Bolts
1. Units of measurement for the fiber required.
2. The quantity needed to create the robe.
Robe
1. The object being created or worked on.
2. Requires a specific amount of blue and white fiber.

Final Imformation Pair

Total bolts
1. A robe requires 2 bolts of blue fiber and 1 bolt of white fiber.
2. The total bolts needed for the robe is the sum of blue and white fiber bolts.

Context Input
Q: A robe takes 2 bolts of blue fiber and half that much white fiber.  How many
bolts in total does it take?

IP:Total bolts
1. A robe requires 2 bolts of blue fiber and 1 bolt of white fiber.
2. The total bolts needed for the robe is the sum of blue and white fiber bolts.

A: Let's think step by step.

Question

Q: A robe takes 2 bolts of blue fiber and half that much white fiber.  How many
bolts in total does it take?

Figure 3: Example inputs of CoT prompting with ISP2.

• Opinion-Based Judgment Prompt: Prompts the LLM to generate
opinion-based judgments (e.g., absolutely reliable, moderately reliable,
weakly reliable, unreliable), which can be converted into numerical values
v (1, 0.67, 0.33, 0).

To construct the prompt T , we provide stepwise evaluation examples (similar to
question answering with rationales) for each instance. Reliability rating prompt takes
different forms depending on the specific problem, enabling the LLM to assess the
information pair and assign an appropriate value based on its judgment.

3.3 Iterative Summarization for Knowledge Understanding

At this step, the goal is to summarize the information pairs from adaptive extraction,
refining the final knowledge that can aid in solving the problem. Among the given
n information pairs, we select the two with the lowest reliability scores for merg-
ing, rather than those with higher scores. The transition from low to high reliability
scores reflects the evolution of knowledge from incomplete to complete information,
representing a process of deepening understanding. Adaptive extraction focuses on
identifying explicit information, while summarization goes beyond this by inferring
implicit knowledge from the previously explicit information, thereby providing deeper
insights. In this way, the selection of lower-scoring information pairs allows for the
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continuous refinement and expansion of knowledge. The iterative process facilitates
a more comprehensive understanding of the problem, ensuring that both explicit and
implicit knowledge are effectively utilized. As illustrated in Figure 2, specifically, we
provide the input context x and the two low-scored information pairs IPa and IPb, and
reason through the LLM to generate a new information pair IPnew, represented as:

IPnew = arg max
IPnew⊆IPa∪IPb

k∏
i=1

pi(IPnew|x), (2)

where
∏k

i=1 pi represents the product of probabilities Pi corresponding to all elements
in IPnew. The new information pair IPnew replaces the original two and is further
evaluated for reliability. The process of summarization and scoring continues through
multiple iterations until the LLM generates the final information pair, and then the
iterative process ends. For example, as shown in Figure 3, four information pairs related
to the problem have been obtained, and through reliability scoring, "Bolts" and "Robe"
are found to have the lowest scores. Then, by using designed prompts to guide the LLM,
a new information pair "Fiber requirements for robe" is generated, with knowledge
descriptions: "1. A robe requires 2 bolts of blue fiber and half that amount of white
fiber." and "2. The total bolts needed for the robe can be calculated by adding the bolts
of blue and white fiber." This new information will be added to the list of information
pairs, and "Bolts" and "Robe" will be removed. The information pairs in the list are then
re-evaluated to facilitate finding new low-scored information pairs in the next iteration.
The new prompt is then passed to the LLM, and iterations continue until the model
returns a unique information pair.

3.4 Question Answering

We treat the reasoning process of LLMs as an autoregressive generation task. Typically,
the input context x consists of two parts: the question Q and the prompt T . Given x, the
model needs to generate the final result y. To generate a reasonable y, the LLM needs
to leverage CoT methods and reason correctly through z as an intermediate step. We
define the predictive probability formula as follows:

p(y | x = (T,Q)) = p(y | x, z) · p(z | x), (3)

where the LLM can be used to compute each condition p(y | x) by incorporating the
conditional variables (Q and T ) as part of its input.

Building on the foundation, ISP2 enhances reasoning capabilities by integrating in-
formation extraction with cognitive summarization. Compared to standard prompting
methods, ISP2 is a pre-prompting method that focuses on understanding the problem.
It employs an iterative summarization process before inference, progressively refin-
ing information pairs based on the given question. ISP2 not only extracts relevant
information but also deeply comprehends the context and nuances of the problem at
hand. The method allows the LLM to generate more accurate and contextually relevant
information pairs for the final reasoning step. Ultimately, the unique information pair
IP is combined with the question for the final reasoning process. Formally, it can be
represented as:

p(y | x = (T,Q, IP )) = p(y | x, z) · p(z | x), (4)
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where IP represents the unique information pair generated through iterative refine-
ment. We present examples and the workflow in Figures 2 and 3, respectively, and
provide the complete generation results in the appendix. To further improve the quality
and accuracy of results in complex problem scenarios, ISP2 uses specialized prompts
such as ISP2-CoT and ISP2-Complex CoT prompts for generating final answers.

4. Experiments

In this section, we present a comprehensive overview of the experiments conducted to
evaluate the performance and effectiveness of our proposed method. The experimental
setup includes detailed descriptions of the datasets used, evaluation metrics, and base-
line models. The main results are presented in subsequent subsections. Additionally, we
analyze the performance across different steps and highlight key findings.

4.1 Experimental Setup

Tasks and Datasets. We evaluate ISP2 on six datasets with diverse input formats. Exten-
sive experiments are conducted across these datasets to demonstrate the universality
of ISP2 prompts. The Table 1 provides relevant information about the datasets used in
our experiment, detailing the data source, task type, answer type, number of prompt
samples, and total test samples for each dataset.

• Arithmetic Reasoning: The following four arithmetic reasoning
benchmarks are widely recognized and considered in the field: AddSub
(Hosseini et al. 2014), which includes math word problems on addition
and subtraction tailored for third to fifth graders; SVAMP (Patel,
Bhattamishra, and Goyal 2021), known for its math word problems with
diverse structures; AQuA (Ling et al. 2017), which focuses on algebraic
word problems; GSM8K (Cobbe et al. 2021), a published benchmark that
features grade-school math problems.

• Commonsense Reasoning: StrategyQA (SQA; Geva et al. 2021) and
CommonsenseQA (CSQA; Talmor et al. 2019) are utilized for
commonsense tasks. CSQA comprises questions that require a variety of
commonsense knowledge, while StrategyQA includes questions that
necessitate multi-step reasoning.

Dataset Reasoning Task Answer Type Example Number

GSM8K (Cobbe et al. 2021) Arithmetic Number 4 1,319

AddSub (Hosseini et al. 2014) Arithmetic Number 4 395

SVAMP (Patel, Bhattamishra, and Goyal 2021) Arithmetic Number 4 1,000

AQuA (Ling et al. 2017) Arithmetic Multi-choice 4 254

StrategyQA (Geva et al. 2021) Commonsense True/False 4 2,290

CommonsenseQA (Talmor et al. 2019) Commonsense Multi-choice 4 1,221

Table 1: Overview of datasets utilized in experiments, where “Number” represents the
number of sampled datasets, and “Example” is the number of prompt examples in the
same dataset.
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Base Prompting. To effectively evaluate our method, we assess ISP2 performance on
three baseline prompting methods: CoT (Wei et al. 2022), Complex CoT (Fu et al. 2023),
and Self Consistency (Wang et al. 2023). CoT predicts answers by generating expla-
nations and steps, allowing the model to solve problems through explicit reasoning
processes, which makes the decision-making more transparent. Complex CoT utilizes
a complexity-based strategy, which breaks down complex problems into smaller parts,
thereby improving reliability in complex scenarios. Self Consistency generates multiple
chains of thought and selects the highest-voted result as the final outcome through vot-
ing. Additionally, all experiments are conducted in a few-shot setting without training
or fine-tuning the LLMs.

LLMs and Implementations. We primarily use GPT-3.51 and LLaMA2-7B, LLaMA2-13B2

for testing, and our decoding strategy employs greedy decoding with the temperature
set to 0, thus producing deterministic outputs. For the few-shot setting, we commonly
use four samples as exemplars, depending on the difficulty of the dataset. We inte-
grate ISP2 into these baseline methods to evaluate its impact, denoted as ISP2-CoT,
ISP2-CoT@5, ISP2-ComCoT, and ISP2-ComCoT@5. Here, ISP2-CoT and ISP2-ComCoT
represent ISP2 combined with CoT and Complex CoT, respectively. The "@5" notation
indicates the use of Self Consistency by retrieving five reasoning chains to perform
majority voting, enhancing the robustness of the final output. Additionally, for different
tasks, we design answer format instructions in the prompts to regulate the structure of
the final answer, facilitating precise answer extraction.

4.2 Main Results

The main results are presented in Table 2, Table 3, and Table 4. Compared with the
SOTA method that also functions as a plug-in, ISP2 demonstrates considerable advan-
tages. Significant improvements have been achieved on benchmarks such for GPT-3.5,
LLaMA2-13B, and LLaMA2-7B. The average improvement rates were 7.1% for GPT-
3.5, 8.1% for LLaMA2-13B, and 12.4% for LLaMA2-7B. These results indicate that by
processing ISP2, LLM can better understand the essence of the problems and enhance
its performance.

Mathematical Reasoning. Table 2 and Table 3 reports performance on the Math Word
Problem (MWP) task, where our method achieves significant performance improve-
ments across various mathematical subdomains, surpassing ComplexCoT by 5.4% on
GPT 3.5. Notably, the enhancement is particularly significant when combined with Self
Consistency, and the robustness and accuracy of ISP2 on different models are evident.
The AddSub dataset focuses on basic mathematical operations, and for models like
GPT and Llama, they already possess sufficient capabilities to solve most problems.
However, problems that are not successfully solved usually contain misleading in-
formation, and ISP2 can avoid the influence of misleading information by filtering
out unnecessary data in adaptive extraction, thus enabling more successful problem
solving on LLMs. SVAMP and GSM8K are more advanced MWP datasets that focus

1 The GPT-3.5 API model "gpt-3.5-turbo-0125" is uniformly used in this paper, and it is available at:
https://platform.openai.com/docs/models#gpt-3-5-turbo

2 LLaMA2-7B and LLaMA2-13B, developed by Meta, have 7 billion and 13 billion parameters, respectively.
The hf versions are available at: https://huggingface.co/meta-llama/Llama-2-7b-hf and
https://huggingface.co/meta-llama/Llama-2-13b-hf.
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Model Method Dataset AverageAddSub SVAMP GSM8K AQuA CSQA SQA

GPT-3.5 Turbo

CoT 81.2 81.2 76.2 58.7 75.5 69.7 73.75
ISP2-CoT 88.6 88.7 83.4 64.4 78.7 71.4 79.43

+7.4 +7.5 +7.2 +5.7 +3.2 +1.7 +5.68
CoT@5 82.3 85.2 80.8 66.5 76.7 71.2 77.12

ISP2-CoT@5 93.9 90.1 84.8 72.7 81.0 73.2 82.62
+11.6 +4.9 +4.0 +6.2 +4.3 +2.0 +5.50

LLaMA2-13B

CoT 38.1 36.3 16.7 16.6 46.9 61.3 35.98
ISP2-CoT 60.0 39.2 19.3 20.4 49.2 61.4 41.58

+21.9 +2.9 +2.6 +3.8 +2.3 +0.1 +5.60
CoT@5 47.8 47.8 17.8 24.4 53.9 61.4 42.18

ISP2-CoT@5 64.6 49.7 21.9 25.4 53.7 64.5 46.63
+16.8 +1.9 +4.1 +1.0 -0.2 +3.1 +4.45

LLaMA2-7B

CoT 29.4 30.7 7.4 19.7 27.2 54.7 28.18
ISP2-CoT 35.2 39.1 8.3 21.6 28.4 56.8 31.57

+5.8 +8.4 +0.9 +1.9 +1.2 +2.1 +3.39
CoT@5 41.8 33.4 7.8 21.6 29.1 57.4 31.85

ISP2-CoT@5 43.9 42.5 11.4 29.9 30.1 58.5 36.05
+2.1 +9.1 +3.6 +8.3 +1.0 +0.9 +4.20

Table 2: ISP2 can help to improve the performance when applied to different LLMs
and prompting methods. @5 utilizes Self Consistency by retrieving five CoT reasoning
chains to make majority votes.

on generalization capabilities in arithmetic and more complex algebra and geometry
problems. The Base Prompt method shows a notable decrease compared to AddSub
on two datasets. Interestingly, we observe that the improvements of ISP2 on SVAMP
and GSM8K are not less than those on AddSub. ISP2 can correct wrong directions
through adaptive extraction and prevent misleading information from contaminating
the summary process. Unlike the first three datasets, AQuA is an algebraic multiple-
choice dataset, which not only requires the model to solve the problem but also to
select the correct answer from multiple options. The format demands higher judgment
capabilities from the model. ISP2 facilitates further computations by allowing algebraic
information pairs to be stored in formulaic forms. ISP2 demonstrates good performance
on mathematical datasets, enhancing the effectiveness of solutions by revealing key data
essential for problem resolution, thus improving the performance of both ComplexCoT
and Self Consistency.

Notably, as detailed in Table 4, compared to the current SOTA plug-and-play meth-
ods in mathematics, our approach performs well, reaching new best levels in AddSub
and SVAMP, and second-best levels in GSM8K and AQuA. The main reason is that ISP2

continuously improves solutions by selectively gathering previous descriptions of prob-
lem space, allowing it to accurately resolve issues. Instead of relying on multiple rounds
of interactive reasoning, repetitive reading, or relationship extraction to obtain crucial
information, solving many complex mathematical problems emphasizes the thought
process and information filtering. By focusing on these aspects, misleading information
is excluded, and effective problem-solving strategies are developed. It enables ISP2 to
achieve significant improvements in mathematical reasoning.

Commonsense reasoning. As shown in Table 2, for the StrategyQA and CommonsenseQA
datasets, ISP2 has increased performance by 4.9% and 2.8%, respectively. Addition-
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Model Method Dataset AverageAddSub SVAMP GSM8K AQuA

GPT-3.5 Turbo

ComCoT 82.7 80.1 79.3 57.8 74.98
ISP2-ComCoT 89.1 87.2 84.6 63.7 81.15

+6.4 +6.4 +5.3 +5.9 +6.17
ComCoT@5 83.9 84.4 83.9 64.6 78.98

ISP2-ComCoT@5 92.8 90.8 87.0 70.5 85.28
+8.9 +6.4 +3.1 +5.9 +6.30

LLaMA2-13B

ComCoT 32.2 33.9 15.5 19.7 25.33
ISP2-ComCoT 70.9 47.8 18.8 20.4 39.48

+38.7 +13.9 +3.3 +0.7 +14.15
ComCoT@5 52.1 43.6 16.9 23.6 34.05

ISP2-ComCoT@5 74.9 57.1 20.4 24.4 44.20
+22.8 +13.5 +3.5 +0.8 +10.15

LLaMA2-7B

ComCoT 27.8 30.7 8.4 22.1 22.25
ISP2-ComCoT 36.8 38.3 8.6 25.9 27.40

+9.0 +7.6 +0.2 +3.8 +5.15
ComCoT@5 39.9 34.2 10.5 24.5 27.28

ISP2-ComCoT@5 43.5 43.6 12.8 27.2 31.78
+3.6 +9.4 +2.3 +2.7 +4.50

Table 3: ISP2 can help to improve the performance when applied to different LLMs
and prompting methods. @5 utilizes Self Consistency by retrieving five Complex CoT
reasoning chains to make majority votes. "ComCoT" stands for Complex CoT.

GPT-3.5
turbo

Prompt AddSub SVAMP GSM8K AQuA CSQA SQA Average
CoT (Wei et al. 2022) 81.2 81.2 76.2 58.7 75.5 69.7 73.75

PHP-CoT (Zheng et al. 2024) 86.1 83.1 84.6 65.4 76.2 69.2 77.43
RE2-CoT (Xu et al. 2024) 82.7 84.9 81.2 63.3 77.9 67.1 76.60

ERA-CoT (Liu et al. 2024) 83.8 82.2 80.2 56.9 83.2 71.4 76.28
ISP2-CoT 88.6 88.7 83.4 64.4 78.7 71.4 79.43

Table 4: The comparison results of existing SOTA plug-and-play methods on GPT-3.5.
We use accuracy as the evaluation metric.The best result is highlighted in bold, and the
second best is underlined.

ally, Self Consistency maintains an orthogonal relationship with ISP2, both enhancing
the performance of CoT, enabling it to better understand common sense and make
more accurate choices in commonsense reasoning. There is a significant performance
improvement in the CSQA dataset, where many hidden pieces of information exist
within the problems, and relying solely on explicit knowledge is insufficient for accurate
responses. Notably, in StrategyQA with the LLaMA2 model, ISP2 did not demonstrate
significant improvement. Smaller parameter LLMs have a tendency to include irrel-
evant text when forming information pairs. Consequently, this inclusion leads to the
formation of continuous erroneous reasoning chains. Such errors can impede the ability
of ISP2 to effectively enhance performance. However, most experiments still show
that ISP2 outperforms most base prompts in commonsense datasets, demonstrating
strong capability of ISP2 to guide CoT. When compared with existing SOTA methods, it
performs comparably to ERA in SQA, which excels at controlling the reasoning process
using entity relations, and also maintains second-best performance in CSQA.
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4.3 Ablation Studies

ISP2 involves multiple processes for handling information pairs and summarizing
knowledge when assisting CoT predictions. We break down various steps to assess the
impact of each component in ISP2 on model performance, which helps us understand
the importance of different factors within ISP2. The various variants are listed below:

• Only Entity Extraction (OE): This variant represents that before reasoning
to answer questions, we only involve using LLMs for named entity
recognition to extract entities as useful information. It omits the step of
iterative summarization and directly provides the entities to LLMs for
reasoning.

• Only Information Pair (OIP): This variant differs from OE in that we
perform a complete extraction of information pairs during information
retrieval, yet still omit the step of iterative summarization, directly
providing the entities to LLMs for reasoning.

• Score Alteration-ISP2 (SAISP2): In this variant, we retain the ISP2 steps,
but in the iterative summarization, we change from summarizing the two
information pairs with the lowest scores to those with the highest scores.

Information pair extraction and two low-score information pair summarization
are effective for answering questions. In tests across six datasets, both CoT and Com-
plex CoT performance improved with the addition of entities and complete information
pairs. However, the inclusion of complete information pairs was more significantly
beneficial for problem reasoning. Information pairs offer more detailed explanations
compared to entity extraction. While entity extraction helps LLMs focus on key terms,
OE reasoning requires the model to balance understanding the context and solving
the problem simultaneously, which can complicate the reasoning process. On the other
hand, OIP reasoning provide detailed descriptions that simplify the reasoning process
by allowing the LLM to concentrate solely on solving the problem, thereby reducing

Model Method Dataset AverageAddSub SVAMP GSM8K AQuA CSQA SQA

GPT-3.5 Turbo

OE 84.3 82.4 79.8 60.2 75.1 71.3 75.52
OIP 85.7 86.3 80.4 60.1 76.7 70.1 76.55

SAISP2 83.8 85.1 76.9 59.9 75.9 69.1 75.12
ISP2 88.6 88.7 83.4 64.4 78.7 71.4 79.20

LLaMA2-13B

OE 58.5 36.7 14.1 18.9 45.2 60.3 38.95
OIP 61.2 40.2 17.2 18.9 46.6 61.7 40.97

SAISP2 59.2 37.2 15.9 18.9 43.9 60.3 39.23
ISP2 60.0 39.2 19.3 20.4 49.2 61.4 41.58

LLaMA2-7B

OE 34.9 37.5 11.1 19.8 27.7 57.2 31.37
OIP 34.6 38.5 10.6 20.1 27.5 56.5 31.30

SAISP2 34.6 37.8 9.4 19.8 27.7 56.1 30.91
ISP2 35.2 39.1 8.3 21.6 28.4 56.8 31.57

Table 5: Performance comparison of ISP2 aiding CoT reasoning under different combi-
nations and summarization order settings.
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Model Method Dataset AverageAddSub SVAMP GSM8K AQuA CSQA SQA

GPT-3.5 Turbo

OE@5 90.1 85.8 83.2 66.8 72.4 77.4 79.28
OIP@5 92.5 85.7 83.2 69.9 72.3 78.2 80.30

SAISP2@5 93.4 87.1 84.2 67.2 71.1 78.6 80.27
ISP2@5 93.9 90.1 84.8 72.7 73.2 81.0 82.62

LLaMA2-13B

OE@5 62.0 48.1 18.7 22.3 52.3 63.4 44.47
OIP@5 64.6 48.2 22.1 22.9 53.1 63.7 45.77

SAISP2+@5 61.0 48.0 20.9 24.5 52.6 61.8 44.80
ISP2+@5 64.6 49.7 21.9 25.4 53.7 64.5 46.63

LLaMA2-7B

OE@5 42.0 29.3 11.3 26.3 29.2 55.6 32.28
OIP@5 40.1 7.8 8.9 24.0 28.9 55.8 32.58

SAISP2@5 38.5 36.1 8.1 23.2 27.4 54.6 31.32
ISP2@5 43.9 42.5 11.4 29.9 30.1 58.5 36.05

Table 6: Performance comparison of ISP2 across different combinations and ordering of
summarization steps, where Self Consistency @5 is utilized by retrieving five chains of
CoT reasoning to make majority votes.

Model Method Dataset AverageAddSub SVAMP GSM8K AQuA

GPT-3.5 Turbo

OE 86.6 83.9 83.9 59.4 78.45
OIP 86.3 85.3 82.8 60.1 78.63

SAISP2 85.2 84.9 80.1 58.7 77.23
ISP2 89.1 87.2 84.6 63.7 81.15

LLaMA2-13B

OE 64.8 44.8 15.7 20.4 36.43
OIP 66.8 44.8 17.7 19.2 37.13

SAISP2 69.1 43.1 16.5 17.7 36.60
ISP2 70.9 47.8 18.8 20.4 39.48

LLaMA2-7B

OE 35.2 34.6 7.8 22.7 25.01
OIP 35.2 37.6 8.4 25.4 26.65

SAISP2 33.4 35.0 7.4 23.8 23.89
ISP2 36.8 38.3 8.6 25.9 27.40

Table 7: Performance comparison of ISP2 aiding Complex CoT reasoning under differ-
ent combinations and summarization order settings.

Model Method Dataset AverageAddSub SVAMP GSM8K AQuA

GPT-3.5 Turbo

OE@5 91.2 84.9 84.2 68.9 82.30
OIP@5 92.2 86.7 85.2 68.8 83.23

SAISP2@5 92.3 88.6 86.9 69.2 84.25
ISP2@5 92.8 90.8 87.0 70.5 85.28

LLaMA2-13B

OE@5 64.8 56.4 17.9 23.7 40.70
OIP@5 66.8 57.1 19.8 24.8 42.13

SAISP2@5 72.2 55.6 20.2 24.5 43.13
ISP2@5 74.9 57.1 20.4 24.4 44.20

LLaMA2-7B

OE@5 43.8 42.1 11.4 20.1 29.35
OIP@5 40.3 34.9 9.7 24.4 27.33

SAISP2@5 40.6 36.1 6.3 24.4 26.85
ISP2@5 43.5 43.6 12.8 27.2 31.78

Table 8: Performance comparison of ISP2 across different combinations and ordering of
summarization steps, where Self Consistency @5 is utilized by retrieving five chains of
Complex CoT reasoning to make majority votes.
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unnecessary complexity and enhancing effectiveness. Additionally, when ISP2 switched
to extracting the two highest scoring information pairs for iterative summarization, the
results were not competitive. The highest scores indicate that the information pairs
already possess a significant positive boost to answering the question. After summa-
rization, further exploration of in-depth information becomes limited. In contrast, low-
scoring information pairs, having been retained through the filtering process, prove
their efficacy yet still have substantial potential to be tapped. Therefore, choosing two
low-scoring information pairs allows for the accumulation of more implicit knowl-
edge through iterative summarization, enabling the information pairs to continuously
deepen their cognitive approach towards providing more reliable knowledge.

5. Discussion

5.1 Summarization Steps Analysis

We analyze the distribution of iterative summarization step lengths during inference
and their positive guiding effect on reasoning. In Figure 4, we illustrate the impact
of final information pairs generated from different step lengths on the performance
of LLMs across six datasets. A common observation is that shorter steps consistently
provide effective information for answering questions. We also find that the step length
distribution for each task predominantly falls within the category of short steps. During
adaptive extraction, much of the less helpful information has already been filtered out,
resulting in step length compression and simplifying the reasoning process. In fact, on
LLaMA, information generated with longer steps can still effectively assist reasoning.
However, for GPT-3.5, longer steps may not offer substantial support. We believe this is
because GPT inherently possesses strong problem-solving capabilities, and excessively
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Figure 4: Distribution of summarization steps and accuracy across different LLMs on
various datasets
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long steps might interfere with the coherence of final information integration. In con-
trast, LLaMA can leverage more extensive summarization steps to enhance the pro-
cessing and retention of knowledge within the information. These summaries serve as
navigation tools within the problem space, continuously reinforcing and accumulating
critical details to guide the transition from the initial state to the goal state.

5.2 Error Source Analysis

We extracted 100 erroneous samples from each dataset and identified three critical types
of errors that arise during the ISP2 process. 1. Information Pair Error (IPE): Failure to
extract all explicit information pairs in the question or extraction of information pairs
with misleading information; 2. Summarization Error (SE): Summaries that contain
misleading information; 3. Reasoning Error (RE): Correct summarization but generation
of an incorrect answer due to faulty reasoning. These types of errors represent potential
points of failure at each step of the ISP2 process, which can propagate and affect
subsequent operations.

Task Dataset IPE SE RE

Commonsense StrategyQA 24% 20% 15%
Reasoning CSQA 19% 22% 10%

SVAMP 19% 11% 3%
Mathematical AQuA 38% 12% 10%
Reasoning AddSub 10% 17% 13%

GSM8K 21% 10% 32%

Table 9: Proportion of different error categories across various datasets.

Table 9 displays the distribution of error categories across each dataset. Considering
the error categories, the probability of information pair extraction errors is the highest,
while the error rate for summarization is relatively lower, and the error rate for inference
is the lowest. We observe that in commonsense reasoning datasets, the error rates for
information extraction and summarization are close. It is attributed to the fact that
the model’s own knowledge contains some elements related to implicit information, so
the defects in information pair extraction are not significant. However, during the final
inference stage, conflicts often arise between the LLM’s inherent knowledge and the al-
ready summarized information, leading to judgment errors in the final decision-making
process. The rate of information pair extraction errors in mathematical datasets shows a
positive correlation with the complexity of the dataset. From basic arithmetic operations
to complex algebraic calculations, this trend becomes increasingly pronounced. It indi-
cates that as the difficulty of problems increases, the LLM’s limitations in mathematical
understanding become more apparent, leading to a greater impact on its ability to
accurately collect and process mathematical information. Additionally, summarization
helps improve dataset accuracy, but deficiencies in the large model’s mathematical
computation capabilities during the summarization process still exist. Indeed, this issue
can also arise during the inference process. Even if the summarized content is accurate,
computational errors can still occur during inference.
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6. Conclusion

We propose a new method called Iterative Summarization Pre-Prompting (ISP2), which
utilizes LLMs for precise information extraction and iterative summarization processes.
By drawing on human approaches to understanding problems, ISP2 enhances the rea-
soning capabilities of the CoT method when applied to LLMs. The process of informa-
tion understanding can address the weaknesses of these classical methods, providing
a way to solve complex problems where the known information is too scattered, not
cohesive, and not formalized. Additionally, ISP2 can significantly improve the perfor-
mance of LLMs on several datasets, and it can be easily combined with CoT and Self
Consistency to further enhance reasoning effectiveness. Equally important, the frame-
work in our work only demonstrates the enhanced reasoning capabilities of ISP2. From
a broader perspective, we consider this an invitation to expand inquiry. We hope our
method will inspire further research in NLP. It revisits the discussion of problem space
interpretation, incorporating Simon’s linguistic theories. ISP2 should provide valuable
references for researchers, encouraging them to undertake more in-depth investigations
across a variety of languages.

7. Appendix

Appendix A: Answer Formation

Here is the ISP2 process dialogue, with different steps handled through CoT. Table 2 and
Table 3 show the reasoning processes for mathematical and commonsense problems,
respectively. In the final part of our reasoning to generate the answer, we will fix the
format of the final answer, as shown in Table 1.

Tasks Answer-format Instructions
gsm8k Your final answer should be a single numerical number, in the form answer.
svamp Your final answer should be a single numerical number, in the form answer.
AQuA Your answer should be a single numerical number in the form answer,

and there should be only one correct choice in the form choice.
AddSub Your final answer should be a single numerical number, in the form answer.
CommonsenseQA Your answer should be in the form choice. There is only one correct choice.
StrategyQA Your answer should be either yes or no, in the form answer.

Table 1: Answer format instructions for various tasks

Appendix B: Evaluation Metrics

Accuracy is used as an evaluation metric to measure performance in tasks involving
mathematical reasoning and commonsense reasoning. For problems where the output
is a number, we use regular expressions for exact match evaluation for datasets such
as GSM8K, SVAMP, and AddSub. However, in AddSub, we find that LLMs cannot
perform computations precisely (especially when dealing with high-precision floats
and large numbers), so we adopt the method with a relative tolerance of 0.001 to
compare answers. For AQuA, since it involves mathematical multiple-choice questions,
we compare the extracted option with the correct option to verify consistency, to prevent
incorrect problem-solving occurrences. In cases where the commonsense dataset an-
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SVAMP Problem
Q: Kylar went to the store to buy glasses for his new apartment. One glass costs $5,
but every second glass costs only 60% of the price. Kylar wants to buy 16 glasses.
How much does he need to pay for them?
Adaptive Extraction of Candidate Information
Information Pairs
Glasses
- One glass costs $5.
- Every second glass costs 60% of the price.
- Kylar wants to buy 16 glasses in total.
Kylar
- Kylar went to the store.
- Wants 16 glasses.
Price
- One glass costs $5.
- Every second glass costs 60%.
- Kylar needs to pay for all glasses.
Iterative Summarization for Knowledge Understanding
Step1
Kylar + Price ⇒ Glasses Purchase
- Buying 16 glasses.
- One glass $5, second glass 60% of that.
Step2
Glasses Purchase + Glass ⇒ Total Purchase
- 16 glasses for new apartment.
- Alternating prices, $5 and $3.
- Calculate total based on pricing scheme.
Final Input Formation
Q: Kylar went to the store to buy glasses for his new apartment. One glass costs $5,
but every second glass costs only 60% of the price. Kylar wants to buy 16 glasses.
How much does he need to pay for them?
Glasses Purchase
- Kylar is purchasing 16 glasses for his new apartment.
- The price of one glass is $5, with every second glass costing only 60% of the
original price.
- Kylar needs to pay for all the glasses he wants to buy.
- The total cost of the glasses can be calculated based on the pricing scheme.
A: Let’s think step by step.
Output
Kylar wants to buy 16 glasses for his new apartment.
The price of the first glass is $5.
The price of every second glass is 60% of the original price, which is 0.6× 5 = 3.
This creates an alternating pattern of 5 and 3 for each glass.
So, for every pair of glasses, Kylar pays $5 + $3 = $8.
Since there are 16 glasses in total, there are 16

2 = 8 pairs of glasses.
Therefore, the total cost for all 16 glasses would be 8 pairs ×$8 per pair = $64.
Answer: 64

Table 2: Inference Process of ISP2 on Mathematical Problem Datasets.
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SQA Problem
Q: Do the anchors on Rede Globo speak Chinese?
Adaptive Extraction of Candidate Information
Information Pairs
Anchors on Rede Globo
- The anchors on Rede Globo refer to the news presenters or hosts on the Brazilian
television network Rede Globo, one of the largest TV networks in Brazil.
- These anchors are responsible for delivering news, conducting interviews, and
hosting various programs on the network.
- Rede Globo anchors are typically well-versed in multiple languages to cater to a
diverse audience.
Chinese language
- Chinese is one of the most widely spoken languages globally, with numerous
dialects such as Mandarin and Cantonese.
- Learning Chinese can be challenging due to its tonal nature and complex writing
system.
- It is unlikely that anchors on Rede Globo speak Chinese unless they have a specific
background or training in the language.
Iterative Summarization for Knowledge Understanding

Step1
Anchors on Rede Globo + Chinese language ⇒ Anchors on Rede Globo
- The anchors on Rede Globo, prominent figures on the Brazilian television net-
work, are adept at presenting news, conducting interviews, and hosting programs
for a diverse audience.
- Given the global reach of Rede Globo, these anchors are likely proficient in
multiple languages to cater to a wide viewership.
- While Chinese is a widely spoken language with complexities in tonality and
writing, it is improbable that anchors on Rede Globo speak Chinese unless they
possess specialized training or background in the language.
Final Input Formation
Q: Do the anchors on Rede Globo speak Chinese?
Anchors on Rede Globo
- The anchors on Rede Globo, prominent figures on the Brazilian television net-
work, are adept at presenting news, conducting interviews, and hosting programs
for a diverse audience.
- Given the global reach of Rede Globo, these anchors are likely proficient in
multiple languages to cater to a wide viewership.
- While Chinese is a widely spoken language with complexities in tonality and
writing, it is improbable that anchors on Rede Globo speak Chinese unless they
possess specialized training or background in the language.
A: Let’s think step by step.
Output
Anchors on Rede Globo are skilled in presenting news for a diverse audience.
They likely know multiple languages to cater to a wide viewership.
Chinese is a complex language with tonality and writing systems.
It is improbable that anchors on Rede Globo speak Chinese unless they have spe-
cialized training in the language. So the answer is no.
Answer: No

Table 3: Inference Process of ISP2 on Commonsense Problem Datasets
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swers are binary (yes / no) or multiple-choice, such as StrategyQA / CommonsenseQA,
we assess whether the extracted result aligns with the provided label.
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