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Abstract

Most existing methods regard open-set Chinese text recog-
nition (CTR) as a single-task problem, primarily focusing
on prototype learning of linguistic components or glyphs
to identify unseen characters. In contrast, humans iden-
tify characters by integrating multiple perspectives, includ-
ing linguistic and visual cues. Inspired by this, we pro-
pose a multi-task framework termed MSA?, which consid-
ers multi-view character representations for open-set CTR.
Within MSAZ2, we introduce two novel strategies for char-
acter representation: structure-aware component encoding
(SACE) and style-adaptive glyph embedding (SAGE). SACE
utilizes a binary tree with dynamic representation space to
emphasize the primary linguistic components, thereby gen-
erating structure-aware and discriminative linguistic repre-
sentations for each character. Meanwhile, SAGE employs
a glyph-centric contrastive learning to aggregate features
from diverse forms, yielding robust glyph representations
for the CTR model to adapt to the style variations among
various fonts. Extensive experiments demonstrate that our
proposed MSA? outperforms state-of-the-art CTR methods,
achieving an average improvement of 1.3% and 6.0% in ac-
curacy under closed-set and open-set settings on the BCTR
dataset, respectively. The code will be available soon.

1. Introduction

Chinese Text Recognition (CTR) is a fundamental task
in computer vision that has been extensively studied for
decades [4, 18, 23, 30, 33-35, 37, 41]. Unlike Latin, Chi-
nese vocabulary is vast and continuously expanding, which
naturally leads to open-set recognition challenges, i.e., re-
quiring recognizers to identify out-of-vocabulary charac-
ters, in real-world applications. Conventional CTR meth-
ods must be fine-tuned with updated vocabularies whenever
new Chinese characters emerge, which is very inefficient
and resource consuming.

To address the open-set recognition problem, existing so-

o
o

Improvement on SOTA

with SAIE
with SAGE
MSA? +4.5%

@ Ours

w
[

@ HierCode (PR’25)

+2.9%
@ SideNet-DDCM (PR’24)

w
o

Chenetal.

(ICAr21) +2.8%

Accuracy (%)
N N
o w

@ HDE (PR’20)

i
u

@ DenseRAN

N

4 6 8 10 12
Inference Time (ms) Accuracy

(a) (b)

Figure 1. Performance comparisons of MSA? and previous meth-
ods on ICDAR2013 in open-set scenarios. (a) accuracy vs. infer-
ence time; (b) improvements from three key strategies.

lutions can be broadly categorized into linguistic and glyph-
based methods. Linguistic methods generate a unified rep-
resentation for both seen and unseen characters by decom-
posing them into more basic linguistic components, such as
stroke order [3, 16, 29], radical distribution [11, 31], struc-
tured radicals [21, 38, 42, 45, 46], and hierarchical infor-
mation [1, 48]. Open-set recognition is achieved by match-
ing the predicted sequence with a representation lexicon.
In contrast, glyph-based methods directly assess the sim-
ilarity of features between the input and glyphs rendered
in a standard form (e.g., printed), including glyph-based
prototype learning [13, 15, 36, 47] and deep matching net-
works [12, 14, 44]. Despite these advancements, existing
approaches generally treat open-set CTR as a single-task
problem, where the potential to integrate linguistic knowl-
edge and glyphs has not been fully exploited.

When encountering unseen text images, native Chinese
speakers typically utilize both linguistic knowledge and
glyphs to infer their categories. Moreover, humans can eas-
ily recognize characters containing error secondary struc-
tures but struggle with those exhibiting error primary struc-
tures, as illustrated in Figure 2. This argues that humans
rely more on primary structures than secondary structures
to identify characters. In addition, children learn to rec-
ognize characters by reading them in various forms, such
as printed, handwritten, and artistic fonts, allowing them to
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Figure 2. Impact of different structures on identifying the charac-
ter, showing the primary structure is more crucial on recognition.

develop robust character representations and naturally adapt

to style variations across different fonts.

Inspired by human recognition of unseen Chinese texts,
we propose a Multi-task framework termed MSA? for
open-set CTR, which incorporates two novel techniques:
Structure-Aware Component Encoding (SACE) and Style-
Adaptive Glyph Embedding (SAGE). To simultaneously
leverage linguistic knowledge and glyphs during recogni-
tion, MSA? first applies SACE and SAGE to generate rep-
resentation lexicons from different perspectives. Multi-
task decoding is then applied to predict both linguistic
components and glyph representations, along with similar-
ity searching between predictions and representation lexi-
cons to identify input text in open-set settings without fine-
tuning. In SACE, linguistic components are organized us-
ing a binary tree and represented in dynamic space based
on their contribution to recognition, encouraging the recog-
nizer to prioritize primary structures. For SAGE, a specially
designed glyph-centric contrastive learning pipeline derives
robust glyph representations from a set of glyphs with di-
verse forms, significantly enhancing the style adaptation of
the recognizer. As illustrated in Figure 1, MSA? is effec-
tive and efficient in recognizing unseen characters. Fur-
thermore, comprehensive experiments on CTR benchmarks
demonstrate that the proposed method achieves state-of-the-
art results in both open-set and closed-set CTR.

In summary, our contributions are as follows:

« Inspired by human Chinese text recognition, we propose
a multi-task framework, MSAZ2, for open-set CTR, which
unifies the representation of linguistic components and
glyphs and employs multi-task decoding to predict them.

« We propose SACE to generate structure-aware represen-
tations for each character based on linguistic components,
encouraging the model to prioritize essential structures.

o We present SAGE to create robust glyph representations
via contrastive learning for the recognizer, enhancing the
style adaptation for various fonts during recognition.

« Extensive experiments validate that MSA? outperforms
previous CTR methods by a clear margin in both closed-
set and open-set settings. Besides, SACE creates more ef-

fective linguistic representations, while SAGE enhances
recognition, particularly for text with non-standard forms.

2. Related Work
2.1. Linguistic Methods

Linguistic methods involve supervised learning of the
fundamental linguistic components of Chinese characters.
Some researchers consider the open-set CTR problem from
a stroke perspective. Liu et al. [16] and Su et al. [29] fo-
cus on extracting reliable stroke data for recognition, while
Chen et al. [3] treat Chinese characters as sequences of
strokes and employ a matching-based strategy for identi-
fication. Regarding radicals, several studies design radi-
cal count decoders to categorize inputs into different rad-
ical groups and predict their corresponding counts [11, 31].
To mitigate the problem of many-to-one mapping, Zhang et
al. [46] and Yang et al. [38] utilize the Ideographic Descrip-
tion Sequence (IDS) to represent characters and predict IDS
with RNN- and Transformer-based decoders. Moreover,
Cao et al. [1] propose a hierarchical decomposition em-
bedding (HDE) to represent character structures and align
the embedding space with the visual feature space using
cosine similarity. Recently, HierCode [48] introduced a
lightweight framework for efficient open-set text recog-
nition using the hierarchical linguistic information of the
characters. However, these methods treat all linguistic com-
ponents as equally significant for recognition, neglecting
the distinction between primary and secondary structures,
which leads to suboptimal performance.

2.2. Glyph-based Methods

Glyph-based methods regard character instances as indivis-
ible units and employ deep matching or prototype learning
to solve the problems in open-set text recognition. Xiao
et al. [36] introduce an instance loss to constrain character
glyphs and enhance recognition. Li et al. [12] and Zhang et
al. [44] view the open-set CTR as a visual matching prob-
lem, achieving character recognition through deep match-
ing networks and glyph sample localization, respectively.
OpenCCD [14] uses a residual network to extract domain-
specific visual features and predicts characters with a co-
sine similarity-based classifier. In [15], a label-to-prototype
learning framework is proposed to emphasize intrinsic com-
ponent information for open-set CTR. SideNet [13] specif-
ically designs a counting-based spatial conversion module
for glyph representation and develops a transformer-based
classifier for recognition. Although these methods achieve
satisfactory performance on various CTR benchmarks, they
are sensitive to style variations in text and struggle with rec-
ognizing samples with non-standard forms, e.g., handwrit-
ten or artistic text, which limits their potential applications
in real-world scenarios.
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Figure 3. Overall architecture of the proposed MSA?, consisting of a multi-task recognition paradigm, structure-aware component encoding
(SACE), and style-adaptive glyph embedding (SAGE). SACE and SAGE produce canonical representations of Chinese characters based
on linguistic knowledge and glyphs for the recognizer, respectively. ‘STE’ represents the straight-through estimator.

3. Methodology

3.1. Overview

To effectively leverage linguistic knowledge and glyphs for
recognition, we propose a novel multi-task framework con-
sisting of three key components: SACE, SAGE, and a multi-
task recognition paradigm. As shown in Figure 3, SACE
and SAGE are separately designed to generate the represen-
tation lexicon based on linguistics and glyphs: E; € RM >
and E, € RMX*Ls where M is the vocabulary size, L; and
L, denote the dimensions of the linguistic and glyph rep-
resentations, respectively. The recognition paradigm then
utilizes these representation lexicons through multi-task de-
coding and similarity searching to identify the input.
Recognition Paradigm The combination of a backbone
and a sequence model is responsible for extracting contex-
tual features of the input x. Subsequently, two lightweight
decoders, i.e., linguistics decoder D; and glyph decoder Dy,
are employed separately to predict the corresponding repre-
sentations, i.e., P; and P, from the contextual features:

Py = Binarize(Dy(Fe(x))) €
Py = Dy(Fe(x)) € RV*Le,

NXxL
R Y

(D

where F, denotes the function for feature extraction, and N
denotes the sequence length. Notably, we binarize the out-
put of the linguistics decoder to more precisely describe the
discrete linguistic representation. The similarity searching
is then conducted between the predicted representations and
the representation lexicons to determine the characters:

S, =P (E)T e RN*M, °
Sg — Pg . (Eg>T c RNXM7

where S;, S, denotes the prediction based on linguistics and

glyph. Finally, an element-wise summation is performed to
fuse the predictions, yielding the recognition result I:

I = Dyoq(wiS) + waSy), 3)

where wy and ws are both set to 0.5 for normalization. The
term Dsq refers to the sequence decoder, i.e., CTC or at-
tention decoder, which is utilized to convert the ensemble
predictions into recognition results.

Loss function We employ the similarity-based recogni-
tion loss proposed in [48] as the loss function for the rec-
ognizer, which is defined as the negative log likelihood be-
tween the recognition results I and the label I:

=—> logp(I[1). (4)

Subsequently, the total loss Liota is defined as the sum
of the recognition losses L. on both the linguistic and
glyph branches, which can be expressed as follows:

Lrec(L 1)

ACtotal = ‘Crec (Is> il) + ACrec(lsy Ig)a (5)

where I, and ig denote the recognition result based on
the linguistics and glyphs, respectively. I represents the
ground truth label composed of seen characters.

3.2. Structure-aware Component Encoding

From a linguistic perspective, each Chinese character can
be uniquely represented by a set of components, comprising
structures and radicals. As shown in Figure 4, SACE hier-
archically organizes these components using a binary tree
to differentiate between their significance for recognition,
where the less significant components are placed in deeper
layers. To align the representations of different characters,
SACE constructs the tree as a full tree with a maximum
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Figure 4. Illustration of (a) the impact of structures at different depths on character appearance, demonstrating that deeper structures have
less impact on recognition; (b) the decomposition of the Chinese character ‘%’ organized with a full binary tree, where structures reside at
parent nodes, radicals reside at leaf nodes, and ‘bl.’” denotes the null node for padding; (c) the generated linguistic representation.
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depth of D. The final linguistic representation is generated
by concatenating the structures and radical codes.

Structures Encoding As illustrated in Figure 5, Chinese
characters exhibit ten distinct structures, which can be cat-
egorized into three classes. SACE utilizes varying-length
codes to represent structures across different layers. In the
shallower layers, structures are encoded with longer codes,
playing a more crucial role in similarity searching, and thus
influencing recognition results. Specifically, the structure
at the root node is encoded with a 16-bit multi-hot code,
and the code length is halved as the depth increases until it
reaches 1 bit. Since the structures residing deeper than the
3 layer have minimal impact on recognition, SACE uses
the same 2-bit code to represent the same class of structures
in the 4" layer. For deeper layers, SACE simply flags their
structure nodes with a single bit. Notably, although sec-
ondary structures may share the same code, SACE can still
generate unique and discriminative representations for each
character by combining them with radicals.

To analyze the effectiveness of SACE, we compare it
with the baseline using static space in terms of encoding
overhead and expressive ability. The expressive ability is
reflected by the size of the representation space, while the
encoding overhead L; is calculated as follows:

D—1
Ly=) Lg2"", 6)
d=1

where Lg, represents the size of the representation space at

Encoding Overhead Expressive ability

—— Ours
---- Baseline

i 2 3 4 5 6 7 8 9 10 1 12 3 4 5 6 7 8 9 10 11

Figure 6. Comparisons of encoding overhead and expressive abil-
ity under varying decomposition iterations.

the d" layer. As shown in Figure 6, SACE generates more
informative and expressive representations than the baseline
in most cases, especially for the complex characters requir-
ing large decomposition iterations.

Radicals Encoding Dynamic space encoding increases
the complexity of representations. In contrast to structures,
there are far more than ten types (i.e., approximately 500)
of radicals needed for representing all Chinese characters.
Encoding radicals with the dynamic space would yield a
highly complex representation lexicon, leading to a nega-
tive impact on recognition. Therefore, the radical nodes are
encoded using fixed-length multi-hot codes with 60 bits.

3.3. Style-adaptive Glyph Embedding

SAGE aims to generate the robust glyph representation lex-
12 M

icon, ie., Eg = [ey, €;,...,€,",], which involves a spe-
cially designed glyph-centric contrastive learning (GCCL)
framework. As presented in Figure 7, the GCCL consists of
two stages: the initialization and update of the representa-
tion lexicon and the optimization of the glyph encoder.

In the first stage, we construct a glyph set with 7" differ-
ent styles for each character, where the details are provided
in the Supplementary Material. Mathematically, the glyph
set of character m is defined as G,,, = {g},,92,,...,95}.
We then adopt a frozen glyph encoder F,, derived from
CLIP [26], to extract the glyph embeddings:

e = Fylgr,) t€[1,2,...,T], @)
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where eg“t is the embedding corresponding to the style .
Subsequently, the pseudo-representation € of the charac-
ter m is defined as the center of these embeddings:

> et (8)

t=1

Nl

m
eg =

Finally, we adopt the pseudo-representation to initialize the
glyph representation lexicon: ;" — e;" € Eg.

In the second stage, we fine-tune the glyph encoder using
the initialized representation lexicon with contrastive learn-
ing [24]. Specifically, we employ two MLP layers to project
each glyph embedding and the pseudo-representations into
latent space, and then calculate the contrastive loss L, for

updating the glyph encoder and the MLP layers:

1 L exp(ly' - 1)
La=—37= log = ©)

it 1]
i=1 t=1 J=1,j#i exp(lg” - lg)

where the I%,*, and I} is the projection of the glyph embed-
ding e};* and the pseudo-representation €. In this way, the
glyph encoder is encouraged to minimize intra-class dis-
tances and maximize inter-class distances of glyph embed-
dings, thereby generating discriminative representations.
By iteratively applying these two stages to each charac-
ter in the vocabulary, GCCL progressively bridges the gap
between the pseudo-representation and the robust represen-
tation, ultimately yielding the glyph representation lexicon.

4. Experiments

4.1. Experiment Setting

Benchmark Extensive benchmark on both character and
text recognition across various scenarios are conducted to
validate the effectiveness of the MSA2. ICDAR2013 [39]
is a handwritten Chinese competition database that includes

subsets for text line data (denoted as ICDAR-line) and iso-
lated character data (denoted as ICDAR-char), and we uti-
lize both of them as the evaluation set. CASIA-HWDB
[17] is a large-scale Chinese handwritten database, and we
use the text line portion (i.e., HWDB 2.0-2.2) and the iso-
lated character portion (i.e., HWDB 1.0-1.2) as the training
set for [CDAR2013. BCTR [41] is a comprehensive bench-
mark for Chinese text images, consisting of four subsets:
Scene, Web, Document (denoted as Doc), and Handwriting
(denoted as Handw). CTW [43] contains 812, 872 Chinese
character instances collected from street views across 3, 650
classes, where 760, 107 character images are used for train-
ing and 52, 765 images are reserved for testing.

Evaluation protocol Following the previous work [22,
48], we adopt line-level accuracy for each subset of BCTR
to assess the performance of text recognition. To further in-
vestigate cross-lingual generalization capabilities, we anal-
ysis the averaged recall rates of different type characters on
ICDAR-Line and BCTR benchmarks. For character-level
evaluation, we leverage character-level accuracy on hand-
written (i.e., ICDAR-char) and scene characters (i.e., CTW)
for quantitative comparison of recognition methods.

Implementation Details The maximum depth of the bi-
nary tree, the number of encoded radicals, and the radical
code length are set to 7, 16, and 60, respectively. The GCCL
iteration is set to 7. We use the Adam optimizer with a learn-
ing rate of 1e-6 to fine-tune the glyph encoder. In text recog-
nition, text images are resized to a height of 128 while main-
taining their original aspect ratio. For character recognition,
input images are resized to 96 x 96. Non-Chinese charac-
ters are treated as basic Chinese characters represented by a
special radical (i.e., themselves), allowing them to be pro-
cessed consistently as Chinese characters. All experiments
were conducted using PyTorch on an NVIDIA RTX 4090
GPUs with 24 GB memory. For training of the recognizer,
we employed the Adadelta optimizer with an initial learn-
ing rate of 0.1 and a batch size of 128. More details are
provided in the Supplementary Material.

4.2. Evaluation of Text Recognition

Closed-set Recognition We evaluate the effectiveness of
the proposed MSA? for closed-set text recognition across
a broad spectrum of scenarios, which include four distinct
text types: scene, web, document, and handwritten. The
results are presented in Table 1. Compared with existing
closed-set CTR methods, the proposed method establishes
new records on all subsets of BCTR. Specifically, it sur-
passes SOTA methods by 1.5%, 2.4%, 0.9%, and 1.2% in
accuracy on Scene, Web, Doc, and Handw. Besides, when
compared with the open-set CTR baseline HierCode under
identical model configurations, MSA? achieves a 1.2% av-
erage accuracy improvement across all subsets.
Furthermore, we evaluate the text recognition perfor-
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Methods | Venue |Scene Web Doc Handw Avg
CRNN [27] PAMI'16 | 53.4 545 97.5 46.4 67.0
ASTER [28] PAMI'18 | 54.6 523 93.1 389 64.7
MORAN [20] PR’19 | 51.7 495 954 396 643
SAR [10] AAAT'19 | 625 54.1 94.2 33.7 67.3
SRN [40] CVPR’20 | 60.1 52.3 96.7 18.0 65.0
SEED [25] CVPR’20 | 49.6 46.3 93.7 32.1 61.2

MASTER [19]
TransOCR [2]

PR’21 62.8 521 844 269  56.6
CVPR’21| 633 623 969 534 728

ABINet [7] CVPR’21 | 644 674 972 548 741
SVTR-B [6] OCAT22 | 717 738 982 522 752
SVTR-L [6] 722 741 981 536 755
CCR-CLIP[42] | ICCV’23 | 713 692 983 603  75.8
MSAZ:t 5 737 765 992 615 771
A \ - | +1.5  +24 +09 +12 +13
One-hot 603 602 928 541 700

HierCode [48] PR'25 | 637 662 982 563 742
MSA?2 - 659 694 987 592 754

Aq +2.2 432 +0.5 +2.9 +1.2
Ao +5.6 +9.2 +5.9 +5.1 +5.4

T applies the same configuration of backbone as [42] for fair comparisons.

Table 1. Comparison of recognition accuracy in sentence level (%)
with previous methods on the BCTR dataset, where A; and A,
separately indicate the increment of our method when compared
with the Hiercode [48] and one-hot baseline over each subset and
average. The first ten results are derived from [42] and [48].

Char | Methods | ICDAR BCTR
\ | Line Scene Web Doc Handw
One-hot 9335 82.09 79.57 98.64 91.65
HierCode [48] | 94.53 8341 8339 99.71  92.35

Ch. | MsA? 9554 8585 85.64 99.73 94.38
Aq +1.01 4244 4225 +0.02 +2.03
As +2.19 4376 +6.07 +1.09 +2.73
One-hot 8556 90.24 84.67 9937  86.59
HierCode [48] | 85.65 9027 85.19 99.54  86.61

NCh. | MsA2 8773 9278 88.02 99.79  89.22
Aq +2.08 4251 +2.83 4025 +2.61
Ao 217 4254 4335 4042  +2.63

Table 2. Comparison of recall rate (%) of Chinese character (Ch.)
and Non-Chinese characters (NCh.) on ICDAR-line and BCTR
Datasets. A and A, separately marks the improvement provided
by our method for the HierCode [48] and one-hot baseline.

mance across multi-language scenarios using the ICDAR-
line and BCTR datasets. As shown in Table 2, MSA?
demonstrates significant improvements over HierCode not
only for Chinese characters but also for Latin characters,
numbers, and symbols across each subset. Notably, our
method yields more substantial improvements for recogniz-
ing non-Chinese characters. We attribute this improvement
to the incorporation of glyphs, which effectively represent
these basic characters that are difficult to describe using
Chinese linguistic knowledge.

Open-Set Recognition To evaluate the performance of
text recognition in open-set scenarios, we train the open-
set CTR models using limited data resources. Specifically,
we randomly select distinct proportions p of subsets from

101 1 11

the training data of BCTR, where p € {5, 55, 15> 5> 3}

1/40 1/20 110 1/5 13 1/40 1/20 110 1/5 13

(a) Scene Dataset

n=231 -e- ours

1/40 1/20 110 1/5 1/3

(c) Document Dataset

(d) Handwriting Dataset

Figure 8. Performance comparison in each subset of BCTR under
data-scarce scenarios, where the x and y are separately present the
proportion of training data and the line accuracy. A1, and Az in-
dicates the increment of MSA? when compared with the HierCode
(reproduced by us) and one-hot baseline, respectively.

resulting in various test sets containing different numbers
of unseen characters. As shown in Figure 8, under the
same training strategy, our method consistently outper-
forms both the vanilla one-hot baseline and HierCode by
a significant margin across all open-set conditions on four
subsets. Quantitatively, compared with Hiercode, MSA?2
achieved an average accuracy improvement of 4.6%, 8.9%,
6.6%, and 3.7% on Scene, Web, Doc, and Handw. This
demonstrates the effectiveness of the proposed MSA? for
sentence-level recognition under open-set settings.

4.3. Evaluation of Character Recognition

We conduct character-level evaluations using handwritten
and scene characters under both open-set and closed-set
settings. For open-set recognition, we follow the con-
figurations applied in the previous works [1, 3, 21, 32,
48]. Specifically, for handwritten characters, experiments
are conducted on the HWDBI1.0-1.1 and ICDAR-Char
datasets, which comprise a total of 3, 755 characters. The
first m classes from HWDB are used for training, where
m ranges from {500, 1000, 1500, 2000, 2755}, while the
1,000 classes of ICDAR-Char serve as the evaluation set.
For scene characters, we utilize the CTW dataset and select
samples from the first m classes as the training set, where m
ranges from {500, 1000, 1500, 2000, 3150}. The last 1,000
classes are designated as the test set. Notably, during the
training phase, we perform similarity searches only for the
representations of characters present in the training set. In
the inference phase, the final decision is made by match-
ing the model predictions against the complete lexicon of
representations derived from both training and test samples.

As shown in Table 3, although the MSA? is designed
for open-set text recognition, it still achieves superior re-
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\ |  Representation | Handwritten/% (m for classes) \ Scene/% (m for classes)
Methods Venue

\ | Linguistics Glyph | 500 1000 1500 2000 2755  Full | 500 1000 1500 2000 3150
DenseRAN [32] | ICFHR’18 v 1.70 844 1471 1951 30.68 96.66 | 015 054 160 195 539
HDE [1] PR’20 v 490 1277 1925 25.13 3349 97.14 | 082 211 311 696 775
Chen et al. [3] 1IICATI’21 v v 560 1385 22.88 2573 3791 9673 | 1.54 254 432 682 8.6l
CUE [21] PR’23 v 743 1575 2401 27.04 40.55 96.96 - - - - -
SideNet [13] PR’24 v 5.10 1620 33.80 44.10 50.30 - - - - - -
HierCode [48] PR’25 v 6.22 2071 3539 45.67 5621 97.68 | 1.67 259 454 7.02 9.13
MSAZ2 - v v 824 26.13 40.67 5144 60.17 9885 | 2.05 311 498 7.65 9.68
A | - | - | 42.02 +5.96 +528 +5.73 4396 +1.17 | +0.38 +0.52 +0.44 +0.63 +0.55

Table 3. Comparison of recognition accuracy in character level (%) under open-set setting on ICDAR-char and CTW with previous
methods, where A denote the improvements over each setting. ‘v<” means the glyphs are only used in the testing phase.

Char | Linguistics Glyph | Standard Other Ls, Lgs, Lg, Ls, Ls, | Ls | AR RR

v 91.24 88.38 Random Structure Code 124 94.03 92.42
Compound v 90.95 87.93 | |

Characters v v 91.95 89.82 4 - - - - 124 96.47 94.23
8 - - - - 128 96.60 94.41
Basic v 92.11 88.57 16 4 - - - 136 | 96.78  94.64
Charact v 93.25 89.26 16 8 4 4 - 144 97.03 94.86
aracters v v 93.43 90.41 16 16 - - - 160 96.94 94.76
16 8 8 - - 160 96.96 94.79
) N . 16 8 2 - - 136 | 96.82  94.45
Table 4. Ablation study on the recognition task in recall rate (%) of 16 8 - 2 4 128 | 97.12  94.89
. ¢ > 16 8 - 1 - 120 97.08 94.84
characters with stan@ard and other forms, where ‘Standard .r.efers 16 ] ) 5 5 9 | 9724 9505
to Web and Doc, while ‘Other’ includes Scene and Handwriting. 16 8 - 2 1 80 | 9735 9512

sults compared to existing methods for open-set charac-
ter recognition. In particular, on the handwritten dataset,
MSA? demonstrates absolute accuracy improvements of
2.02%, 5.96%, 5.28%, 5.73%, and 3.96% at m values of
{500, 1000, 1500, 2000, 2755} when compared to the state-
of-the-art method HierCode [48] with the same model con-
figuration. On the scene text dataset, MSAZ also achieves
an average increase over 0.5% in character-level accuracy
across all open-set settings, demonstrating its effectiveness
in open-set character recognition. As for closed-set char-
acter recognition, MSA? also improves performance by
1.17% compared to HierCode.

4.4. Ablation Study

Influence of Recognition Task As shown in Table 4, lin-
guistic knowledge plays a more significant role than glyphs
in recognizing compound characters. In contrast, for ba-
sic characters that cannot be further decomposed, glyphs
provide greater benefits to recognition. This difference
likely arises because compound characters contain richer
linguistic components compared to basic characters. Con-
sequently, combining these two tasks yields comprehensive
improvements to recognition across various scenarios.
Influence of Structure Code Since basic Chinese char-
acters lack internal structures, ablation is conducted with
samples of compound Chinese characters on ICDAR-char.
As reported in Table 5, the worst performance of the ran-
dom code demonstrates that structures play an essential role
in recognition. Furthermore, assigning a smaller represen-
tation space for the structures in deeper layers improves

Table 5. Ablation study on the representation space in terms of
accurate rate (%) (AR) and recall rate (%) (RR) of compound Chi-
nese characters. ‘-’ denotes 4 regarded as the default set.

Study on Iterations of GCCL Study on Glyph Styles

76

88 68

75.14 86
75 A, . /m 66

74.92
841 . Standard 64
74 Amax= 2.03 —=— Other
82 Bmax=334 | 62
"
737311 80 q

60

0 2 4 6 8 10 5 10 20 40 60 65 70

(@ (b)

Figure 9. Ablation study on (a) iterations of GCCL; (b) numbers
of glyph styles in GCCL; where Anax indicates the maximum
improvement. Results are measured in line accuracy (%) in BCTR.

recognition performance, validating the key motivation of
SACE. We also analyze the impact of radical code on recog-
nition, which is presented in the Supplementary Material.

Influence of GCCL As shown in Figure 9(a), recogni-
tion performance benefits from iterations of GCCL, vali-
dating its effectiveness. However, excessive iteration does
not yield continuous improvement in recognition, as it leads
to overfitting and compromises the robust feature extrac-
tion ability learned by the glyph encoder through CLIP.
As shown in Figure 9(b), increasing the diversity of glyph
styles results in a notable improvement in recognizing text
with non-standard forms. This improvement occurs because
greater diversity enables SAGE to better account for style
variations in non-standard forms.
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Figure 10. Investigation of (a) distribution of maximum iteration
required for complete decomposition per character; (b) accurate
rate (left), and recall rate (right) vs. distribution iteration.
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Figure 11. Glyph embedding distribution visualization of whether
applying the GCCL in SAGE.

4.5. Discussion

How does SACE benefit CTR? We think the advantages

of SACE can be summarized as follows:

o The representations created by SACE are consistent with
human perception, where primary structures are encoded
with longer bits to exert a greater influence on recognition
results during the similarity searching process.

o The representations generated by SACE are more infor-
mative than those produced by baseline with static repre-
sentation spaces. Specifically, we calculate the maximum
iteration required for the complete decomposition of each
Chinese character in the GB18030-2000 standard’, as
shown in Figure 10(a). To handle complex characters,
a large maximum decomposition (e.g., > 5) is typically
set for each character, resulting in numerous null nodes
in the decomposition results of simpler characters. SACE
optimizes component encoding by assigning smaller rep-
resentation spaces in deeper layers, where nodes are more
likely to be null, thus reducing the number of meaningless
bits encoded by these null nodes in linguistic representa-
tions. This is further supported by Figure 10(b), which
shows that our method benefits from more iterations com-
pared to the baseline with static representation space.

Visualization To validate the effectiveness of GCCL, we
sample 7 characters and visualize their glyph embeddings
in a 2-D space using t-SNE, where each character is repre-
sented by a distinct color. As shown in Figure 11(a), the
glyph embeddings generated by the glyph encoder without

Ihttps://openstd.samr.gov.cn/bzgk/gb/

B2 Uy A G5

®8 8 BF) 2% s ek i Rk
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Onehot =F1958 3 ZETESHR UANJIAGESR
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Figure 12. Visualizations analysis, where correctly and incorrectly
recognized characters are marked in ‘blue’ and ‘red’, respectively.

fine-tuning are not sufficiently discriminative, with some
embeddings deviating significantly from their cluster cen-
ters in the feature space. When introducing GCC, the glyph
embeddings become closer to their cluster centers (see Fig-
ure 11(b)), proving that GCCL enhances the recognizer by
providing more robust glyph representations.

We also present visualizations to analyze the strengths
of the MSAZ2. Benefiting from SACE, MSA? can identify
characters with incomplete or ambiguous local details, as
demonstrated in Figure 12 (1) and (5). Additionally, as
shown in Figure 12 (7) and (8), the incorporation of visual
cues from glyphs provides MSA? with a clear advantage
in recognizing basic characters, such as numbers and Latin
letters, compared to the one-hot baseline and HierCode.

Limitations MSA? relies on linguistic components and
glyphs to represent characters. Unfortunately, some sam-
ples may lack linguistic information (e.g., ancient texts) or
are difficult to render with specific forms of glyphs (e.g.,
alien characters), potentially leading to suboptimal perfor-
mance. Additionally, MSA? has not considered the connec-
tions among same-type structures with varying importance
during encoding, which will be addressed in future work.

5. Conclusion

In this paper, we introduce MSAZ2, a multi-task frame-
work for open-set Chinese text recognition (CTR), which
incorporates two innovative character modeling strategies:
SACE and SAGE. Inspired by human recognition of Chi-
nese characters, MSA? leverages both linguistic and glyph
representations to determine character categories. Within
MSAZ?, SACE generates more informative linguistic repre-
sentations by allocating larger representation spaces to pri-
mary components. Meanwhile, SAGE enhances the robust-
ness of glyph representations through glyph-centric con-
trastive learning. Our experiments show that emphasizing
primary structures significantly improves recognition per-
formance, and glyph-centric contrastive learning also ben-
efits the recognizer through more discriminative glyph rep-
resentations. Comprehensive evaluations demonstrate that
MSA? outperforms previous CTR methods by a substantial
margin in both closed-set and open-set scenarios.
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