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Abstract

Most existing methods regard open-set Chinese text recog-001
nition (CTR) as a single-task problem, primarily focusing002
on prototype learning of linguistic components or glyphs003
to identify unseen characters. In contrast, humans iden-004
tify characters by integrating multiple perspectives, includ-005
ing linguistic and visual cues. Inspired by this, we pro-006
pose a multi-task framework termed MSA2, which consid-007
ers multi-view character representations for open-set CTR.008
Within MSA2, we introduce two novel strategies for char-009
acter representation: structure-aware component encoding010
(SACE) and style-adaptive glyph embedding (SAGE). SACE011
utilizes a binary tree with dynamic representation space to012
emphasize the primary linguistic components, thereby gen-013
erating structure-aware and discriminative linguistic repre-014
sentations for each character. Meanwhile, SAGE employs015
a glyph-centric contrastive learning to aggregate features016
from diverse forms, yielding robust glyph representations017
for the CTR model to adapt to the style variations among018
various fonts. Extensive experiments demonstrate that our019
proposed MSA2 outperforms state-of-the-art CTR methods,020
achieving an average improvement of 1.3% and 6.0% in ac-021
curacy under closed-set and open-set settings on the BCTR022
dataset, respectively. The code will be available soon.023

1. Introduction024

Chinese Text Recognition (CTR) is a fundamental task025
in computer vision that has been extensively studied for026
decades [4, 18, 23, 30, 33–35, 37, 41]. Unlike Latin, Chi-027
nese vocabulary is vast and continuously expanding, which028
naturally leads to open-set recognition challenges, i.e., re-029
quiring recognizers to identify out-of-vocabulary charac-030
ters, in real-world applications. Conventional CTR meth-031
ods must be fine-tuned with updated vocabularies whenever032
new Chinese characters emerge, which is very inefficient033
and resource consuming.034

To address the open-set recognition problem, existing so-035
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Figure 1. Performance comparisons of MSA2 and previous meth-
ods on ICDAR2013 in open-set scenarios. (a) accuracy vs. infer-
ence time; (b) improvements from three key strategies.

lutions can be broadly categorized into linguistic and glyph- 036
based methods. Linguistic methods generate a unified rep- 037
resentation for both seen and unseen characters by decom- 038
posing them into more basic linguistic components, such as 039
stroke order [3, 16, 29], radical distribution [11, 31], struc- 040
tured radicals [21, 38, 42, 45, 46], and hierarchical infor- 041
mation [1, 48]. Open-set recognition is achieved by match- 042
ing the predicted sequence with a representation lexicon. 043
In contrast, glyph-based methods directly assess the sim- 044
ilarity of features between the input and glyphs rendered 045
in a standard form (e.g., printed), including glyph-based 046
prototype learning [13, 15, 36, 47] and deep matching net- 047
works [12, 14, 44]. Despite these advancements, existing 048
approaches generally treat open-set CTR as a single-task 049
problem, where the potential to integrate linguistic knowl- 050
edge and glyphs has not been fully exploited. 051

When encountering unseen text images, native Chinese 052
speakers typically utilize both linguistic knowledge and 053
glyphs to infer their categories. Moreover, humans can eas- 054
ily recognize characters containing error secondary struc- 055
tures but struggle with those exhibiting error primary struc- 056
tures, as illustrated in Figure 2. This argues that humans 057
rely more on primary structures than secondary structures 058
to identify characters. In addition, children learn to rec- 059
ognize characters by reading them in various forms, such 060
as printed, handwritten, and artistic fonts, allowing them to 061
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Figure 2. Impact of different structures on identifying the charac-
ter, showing the primary structure is more crucial on recognition.

develop robust character representations and naturally adapt062
to style variations across different fonts.063

Inspired by human recognition of unseen Chinese texts,064
we propose a Multi-task framework termed MSA2 for065
open-set CTR, which incorporates two novel techniques:066
Structure-Aware Component Encoding (SACE) and Style-067
Adaptive Glyph Embedding (SAGE). To simultaneously068
leverage linguistic knowledge and glyphs during recogni-069
tion, MSA2 first applies SACE and SAGE to generate rep-070
resentation lexicons from different perspectives. Multi-071
task decoding is then applied to predict both linguistic072
components and glyph representations, along with similar-073
ity searching between predictions and representation lexi-074
cons to identify input text in open-set settings without fine-075
tuning. In SACE, linguistic components are organized us-076
ing a binary tree and represented in dynamic space based077
on their contribution to recognition, encouraging the recog-078
nizer to prioritize primary structures. For SAGE, a specially079
designed glyph-centric contrastive learning pipeline derives080
robust glyph representations from a set of glyphs with di-081
verse forms, significantly enhancing the style adaptation of082
the recognizer. As illustrated in Figure 1, MSA2 is effec-083
tive and efficient in recognizing unseen characters. Fur-084
thermore, comprehensive experiments on CTR benchmarks085
demonstrate that the proposed method achieves state-of-the-086
art results in both open-set and closed-set CTR.087

In summary, our contributions are as follows:088
• Inspired by human Chinese text recognition, we propose089

a multi-task framework, MSA2, for open-set CTR, which090
unifies the representation of linguistic components and091
glyphs and employs multi-task decoding to predict them.092

• We propose SACE to generate structure-aware represen-093
tations for each character based on linguistic components,094
encouraging the model to prioritize essential structures.095

• We present SAGE to create robust glyph representations096
via contrastive learning for the recognizer, enhancing the097
style adaptation for various fonts during recognition.098

• Extensive experiments validate that MSA2 outperforms099
previous CTR methods by a clear margin in both closed-100
set and open-set settings. Besides, SACE creates more ef-101

fective linguistic representations, while SAGE enhances 102
recognition, particularly for text with non-standard forms. 103

2. Related Work 104

2.1. Linguistic Methods 105

Linguistic methods involve supervised learning of the 106
fundamental linguistic components of Chinese characters. 107
Some researchers consider the open-set CTR problem from 108
a stroke perspective. Liu et al. [16] and Su et al. [29] fo- 109
cus on extracting reliable stroke data for recognition, while 110
Chen et al. [3] treat Chinese characters as sequences of 111
strokes and employ a matching-based strategy for identi- 112
fication. Regarding radicals, several studies design radi- 113
cal count decoders to categorize inputs into different rad- 114
ical groups and predict their corresponding counts [11, 31]. 115
To mitigate the problem of many-to-one mapping, Zhang et 116
al. [46] and Yang et al. [38] utilize the Ideographic Descrip- 117
tion Sequence (IDS) to represent characters and predict IDS 118
with RNN- and Transformer-based decoders. Moreover, 119
Cao et al. [1] propose a hierarchical decomposition em- 120
bedding (HDE) to represent character structures and align 121
the embedding space with the visual feature space using 122
cosine similarity. Recently, HierCode [48] introduced a 123
lightweight framework for efficient open-set text recog- 124
nition using the hierarchical linguistic information of the 125
characters. However, these methods treat all linguistic com- 126
ponents as equally significant for recognition, neglecting 127
the distinction between primary and secondary structures, 128
which leads to suboptimal performance. 129

2.2. Glyph-based Methods 130

Glyph-based methods regard character instances as indivis- 131
ible units and employ deep matching or prototype learning 132
to solve the problems in open-set text recognition. Xiao 133
et al. [36] introduce an instance loss to constrain character 134
glyphs and enhance recognition. Li et al. [12] and Zhang et 135
al. [44] view the open-set CTR as a visual matching prob- 136
lem, achieving character recognition through deep match- 137
ing networks and glyph sample localization, respectively. 138
OpenCCD [14] uses a residual network to extract domain- 139
specific visual features and predicts characters with a co- 140
sine similarity-based classifier. In [15], a label-to-prototype 141
learning framework is proposed to emphasize intrinsic com- 142
ponent information for open-set CTR. SideNet [13] specif- 143
ically designs a counting-based spatial conversion module 144
for glyph representation and develops a transformer-based 145
classifier for recognition. Although these methods achieve 146
satisfactory performance on various CTR benchmarks, they 147
are sensitive to style variations in text and struggle with rec- 148
ognizing samples with non-standard forms, e.g., handwrit- 149
ten or artistic text, which limits their potential applications 150
in real-world scenarios. 151
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Figure 3. Overall architecture of the proposed MSA2, consisting of a multi-task recognition paradigm, structure-aware component encoding
(SACE), and style-adaptive glyph embedding (SAGE). SACE and SAGE produce canonical representations of Chinese characters based
on linguistic knowledge and glyphs for the recognizer, respectively. ‘STE’ represents the straight-through estimator.

3. Methodology152

3.1. Overview153

To effectively leverage linguistic knowledge and glyphs for154
recognition, we propose a novel multi-task framework con-155
sisting of three key components: SACE, SAGE, and a multi-156
task recognition paradigm. As shown in Figure 3, SACE157
and SAGE are separately designed to generate the represen-158
tation lexicon based on linguistics and glyphs: El ∈ RM×Ll159
and Eg ∈ RM×Lg , where M is the vocabulary size, Ll and160
Lg denote the dimensions of the linguistic and glyph rep-161
resentations, respectively. The recognition paradigm then162
utilizes these representation lexicons through multi-task de-163
coding and similarity searching to identify the input.164

Recognition Paradigm The combination of a backbone165
and a sequence model is responsible for extracting contex-166
tual features of the input x. Subsequently, two lightweight167
decoders, i.e., linguistics decoderDl and glyph decoderDg,168
are employed separately to predict the corresponding repre-169
sentations, i.e., Pl and Pg, from the contextual features:170

Pl = Binarize(Dl(Fe(x))) ∈ RN×Ll ,

Pg = Dg(Fe(x)) ∈ RN×Lg ,
(1)171

where Fe denotes the function for feature extraction, and N172
denotes the sequence length. Notably, we binarize the out-173
put of the linguistics decoder to more precisely describe the174
discrete linguistic representation. The similarity searching175
is then conducted between the predicted representations and176
the representation lexicons to determine the characters:177

Sl = Pl · (El)
T ∈ RN×M ,

Sg = Pg · (Eg)
T ∈ RN×M ,

(2)178

where Sl, Sg denotes the prediction based on linguistics and179

glyph. Finally, an element-wise summation is performed to 180
fuse the predictions, yielding the recognition result Î: 181

Î = Dseq(ω1Sl + ω2Sg), (3) 182

where ω1 and ω2 are both set to 0.5 for normalization. The 183
term Dseq refers to the sequence decoder, i.e., CTC or at- 184
tention decoder, which is utilized to convert the ensemble 185
predictions into recognition results. 186

Loss function We employ the similarity-based recogni- 187
tion loss proposed in [48] as the loss function for the rec- 188
ognizer, which is defined as the negative log likelihood be- 189
tween the recognition results Î and the label I: 190

Lrec(I, Î, ) = −
∑

log p ( I | Î). (4) 191

Subsequently, the total loss Ltotal is defined as the sum 192
of the recognition losses Lrec on both the linguistic and 193
glyph branches, which can be expressed as follows: 194

Ltotal = Lrec(Is, Îl) + Lrec(Is, Îg), (5) 195

where Îl and Îg denote the recognition result based on 196
the linguistics and glyphs, respectively. Is represents the 197
ground truth label composed of seen characters. 198

3.2. Structure-aware Component Encoding 199

From a linguistic perspective, each Chinese character can 200
be uniquely represented by a set of components, comprising 201
structures and radicals. As shown in Figure 4, SACE hier- 202
archically organizes these components using a binary tree 203
to differentiate between their significance for recognition, 204
where the less significant components are placed in deeper 205
layers. To align the representations of different characters, 206
SACE constructs the tree as a full tree with a maximum 207
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Figure 5. Ten basic structures of Chinese characters, where the
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depth of D. The final linguistic representation is generated208
by concatenating the structures and radical codes.209

Structures Encoding As illustrated in Figure 5, Chinese210
characters exhibit ten distinct structures, which can be cat-211
egorized into three classes. SACE utilizes varying-length212
codes to represent structures across different layers. In the213
shallower layers, structures are encoded with longer codes,214
playing a more crucial role in similarity searching, and thus215
influencing recognition results. Specifically, the structure216
at the root node is encoded with a 16-bit multi-hot code,217
and the code length is halved as the depth increases until it218
reaches 1 bit. Since the structures residing deeper than the219
3rd layer have minimal impact on recognition, SACE uses220
the same 2-bit code to represent the same class of structures221
in the 4th layer. For deeper layers, SACE simply flags their222
structure nodes with a single bit. Notably, although sec-223
ondary structures may share the same code, SACE can still224
generate unique and discriminative representations for each225
character by combining them with radicals.226

To analyze the effectiveness of SACE, we compare it227
with the baseline using static space in terms of encoding228
overhead and expressive ability. The expressive ability is229
reflected by the size of the representation space, while the230
encoding overhead Ls is calculated as follows:231

Ls =

D−1∑
d=1

LSd
2d−1, (6)232

where LSd
represents the size of the representation space at233

Figure 6. Comparisons of encoding overhead and expressive abil-
ity under varying decomposition iterations.

the dth layer. As shown in Figure 6, SACE generates more 234
informative and expressive representations than the baseline 235
in most cases, especially for the complex characters requir- 236
ing large decomposition iterations. 237

Radicals Encoding Dynamic space encoding increases 238
the complexity of representations. In contrast to structures, 239
there are far more than ten types (i.e., approximately 500) 240
of radicals needed for representing all Chinese characters. 241
Encoding radicals with the dynamic space would yield a 242
highly complex representation lexicon, leading to a nega- 243
tive impact on recognition. Therefore, the radical nodes are 244
encoded using fixed-length multi-hot codes with 60 bits. 245

3.3. Style-adaptive Glyph Embedding 246

SAGE aims to generate the robust glyph representation lex- 247
icon, i.e., Eg = [e1g, e

2
g, . . . , e

M
g , ], which involves a spe- 248

cially designed glyph-centric contrastive learning (GCCL) 249
framework. As presented in Figure 7, the GCCL consists of 250
two stages: the initialization and update of the representa- 251
tion lexicon and the optimization of the glyph encoder. 252

In the first stage, we construct a glyph set with T differ- 253
ent styles for each character, where the details are provided 254
in the Supplementary Material. Mathematically, the glyph 255
set of character m is defined as Gm = {g1m, g2m, . . . , gTm}. 256
We then adopt a frozen glyph encoder Fg, derived from 257
CLIP [26], to extract the glyph embeddings: 258

em,t
g = Fg(g

t
m), t ∈ [1, 2, . . . , T ], (7) 259
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Figure 7. Pipeline of the glyph-centric contrastive learning.

where em,t
g is the embedding corresponding to the style t.260

Subsequently, the pseudo-representation êmg of the charac-261
ter m is defined as the center of these embeddings:262

êmg =
1

T

T∑
t=1

em,t
g . (8)263

Finally, we adopt the pseudo-representation to initialize the264
glyph representation lexicon: êmg 7→ emg ∈ Eg.265

In the second stage, we fine-tune the glyph encoder using266
the initialized representation lexicon with contrastive learn-267
ing [24]. Specifically, we employ two MLP layers to project268
each glyph embedding and the pseudo-representations into269
latent space, and then calculate the contrastive loss Lcl for270
updating the glyph encoder and the MLP layers:271

Lcl = −
1

MT

M∑
i=1

T∑
t=1

log
exp(li,tg · lig)∑M

j=1,j ̸=i exp(l
i,t
g · ljg)

, (9)272

where the li,tg , and lig is the projection of the glyph embed-273

ding ei,tg and the pseudo-representation eig. In this way, the274
glyph encoder is encouraged to minimize intra-class dis-275
tances and maximize inter-class distances of glyph embed-276
dings, thereby generating discriminative representations.277

By iteratively applying these two stages to each charac-278
ter in the vocabulary, GCCL progressively bridges the gap279
between the pseudo-representation and the robust represen-280
tation, ultimately yielding the glyph representation lexicon.281

4. Experiments282

4.1. Experiment Setting283

Benchmark Extensive benchmark on both character and284
text recognition across various scenarios are conducted to285
validate the effectiveness of the MSA2. ICDAR2013 [39]286
is a handwritten Chinese competition database that includes287

subsets for text line data (denoted as ICDAR-line) and iso- 288
lated character data (denoted as ICDAR-char), and we uti- 289
lize both of them as the evaluation set. CASIA-HWDB 290
[17] is a large-scale Chinese handwritten database, and we 291
use the text line portion (i.e., HWDB 2.0-2.2) and the iso- 292
lated character portion (i.e., HWDB 1.0-1.2) as the training 293
set for ICDAR2013. BCTR [41] is a comprehensive bench- 294
mark for Chinese text images, consisting of four subsets: 295
Scene, Web, Document (denoted as Doc), and Handwriting 296
(denoted as Handw). CTW [43] contains 812, 872 Chinese 297
character instances collected from street views across 3, 650 298
classes, where 760, 107 character images are used for train- 299
ing and 52, 765 images are reserved for testing. 300

Evaluation protocol Following the previous work [22, 301
48], we adopt line-level accuracy for each subset of BCTR 302
to assess the performance of text recognition. To further in- 303
vestigate cross-lingual generalization capabilities, we anal- 304
ysis the averaged recall rates of different type characters on 305
ICDAR-Line and BCTR benchmarks. For character-level 306
evaluation, we leverage character-level accuracy on hand- 307
written (i.e., ICDAR-char) and scene characters (i.e., CTW) 308
for quantitative comparison of recognition methods. 309

Implementation Details The maximum depth of the bi- 310
nary tree, the number of encoded radicals, and the radical 311
code length are set to 7, 16, and 60, respectively. The GCCL 312
iteration is set to 7. We use the Adam optimizer with a learn- 313
ing rate of 1e-6 to fine-tune the glyph encoder. In text recog- 314
nition, text images are resized to a height of 128 while main- 315
taining their original aspect ratio. For character recognition, 316
input images are resized to 96 × 96. Non-Chinese charac- 317
ters are treated as basic Chinese characters represented by a 318
special radical (i.e., themselves), allowing them to be pro- 319
cessed consistently as Chinese characters. All experiments 320
were conducted using PyTorch on an NVIDIA RTX 4090 321
GPUs with 24 GB memory. For training of the recognizer, 322
we employed the Adadelta optimizer with an initial learn- 323
ing rate of 0.1 and a batch size of 128. More details are 324
provided in the Supplementary Material. 325

4.2. Evaluation of Text Recognition 326

Closed-set Recognition We evaluate the effectiveness of 327
the proposed MSA2 for closed-set text recognition across 328
a broad spectrum of scenarios, which include four distinct 329
text types: scene, web, document, and handwritten. The 330
results are presented in Table 1. Compared with existing 331
closed-set CTR methods, the proposed method establishes 332
new records on all subsets of BCTR. Specifically, it sur- 333
passes SOTA methods by 1.5%, 2.4%, 0.9%, and 1.2% in 334
accuracy on Scene, Web, Doc, and Handw. Besides, when 335
compared with the open-set CTR baseline HierCode under 336
identical model configurations, MSA2 achieves a 1.2% av- 337
erage accuracy improvement across all subsets. 338

Furthermore, we evaluate the text recognition perfor- 339
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Methods Venue Scene 0Web0 0Doc0 Handw 0Avg0

CRNN [27] PAMI’16 53.4 54.5 97.5 46.4 67.0
ASTER [28] PAMI’18 54.6 52.3 93.1 38.9 64.7
MORAN [20] PR’19 51.7 49.5 95.4 39.6 64.3
SAR [10] AAAI’19 62.5 54.1 94.2 33.7 67.3
SRN [40] CVPR’20 60.1 52.3 96.7 18.0 65.0
SEED [25] CVPR’20 49.6 46.3 93.7 32.1 61.2
MASTER [19] PR’21 62.8 52.1 84.4 26.9 56.6
TransOCR [2] CVPR’21 63.3 62.3 96.9 53.4 72.8
ABINet [7] CVPR’21 64.4 67.4 97.2 54.8 74.1
SVTR-B [6] IJCAI’22 71.7 73.8 98.2 52.2 75.2
SVTR-L [6] 72.2 74.1 98.1 53.6 75.5
CCR-CLIP [42] ICCV’23 71.3 69.2 98.3 60.3 75.8
MSA2,† - 73.7 76.5 99.2 61.5 77.1
∆ - +1.5 +2.4 +0.9 +1.2 +1.3

One-hot - 60.3 60.2 92.8 54.1 70.0
HierCode [48] PR’25 63.7 66.2 98.2 56.3 74.2
MSA2 - 65.9 69.4 98.7 59.2 75.4
∆1 - +2.2 +3.2 +0.5 +2.9 +1.2
∆2 +5.6 +9.2 +5.9 +5.1 +5.4

† applies the same configuration of backbone as [42] for fair comparisons.

Table 1. Comparison of recognition accuracy in sentence level (%)
with previous methods on the BCTR dataset, where ∆1 and ∆2

separately indicate the increment of our method when compared
with the Hiercode [48] and one-hot baseline over each subset and
average. The first ten results are derived from [42] and [48].

Char Methods ICDAR BCTR

Line Scene 0Web0 0Doc0 Handw

Ch.

One-hot 93.35 82.09 79.57 98.64 91.65
HierCode [48] 94.53 83.41 83.39 99.71 92.35
MSA2 95.54 85.85 85.64 99.73 94.38
∆1 +1.01 +2.44 +2.25 +0.02 +2.03
∆2 +2.19 +3.76 +6.07 +1.09 +2.73

NCh.

One-hot 85.56 90.24 84.67 99.37 86.59
HierCode [48] 85.65 90.27 85.19 99.54 86.61
MSA2 87.73 92.78 88.02 99.79 89.22
∆1 +2.08 +2.51 +2.83 +0.25 +2.61
∆2 +2.17 +2.54 +3.35 +0.42 +2.63

Table 2. Comparison of recall rate (%) of Chinese character (Ch.)
and Non-Chinese characters (NCh.) on ICDAR-line and BCTR
Datasets. ∆1 and ∆2 separately marks the improvement provided
by our method for the HierCode [48] and one-hot baseline.

mance across multi-language scenarios using the ICDAR-340
line and BCTR datasets. As shown in Table 2, MSA2341
demonstrates significant improvements over HierCode not342
only for Chinese characters but also for Latin characters,343
numbers, and symbols across each subset. Notably, our344
method yields more substantial improvements for recogniz-345
ing non-Chinese characters. We attribute this improvement346
to the incorporation of glyphs, which effectively represent347
these basic characters that are difficult to describe using348
Chinese linguistic knowledge.349

Open-Set Recognition To evaluate the performance of350
text recognition in open-set scenarios, we train the open-351
set CTR models using limited data resources. Specifically,352
we randomly select distinct proportions p of subsets from353
the training data of BCTR, where p ∈ { 1

40 ,
1
20 ,

1
10 ,

1
5 ,

1
3},354

(a) Scene Dataset (b) Web Dataset

(c) Document Dataset (d) Handwriting Dataset

Figure 8. Performance comparison in each subset of BCTR under
data-scarce scenarios, where the x and y are separately present the
proportion of training data and the line accuracy. ∆1, and ∆2 in-
dicates the increment of MSA2 when compared with the HierCode
(reproduced by us) and one-hot baseline, respectively.

resulting in various test sets containing different numbers 355
of unseen characters. As shown in Figure 8, under the 356
same training strategy, our method consistently outper- 357
forms both the vanilla one-hot baseline and HierCode by 358
a significant margin across all open-set conditions on four 359
subsets. Quantitatively, compared with Hiercode, MSA2 360
achieved an average accuracy improvement of 4.6%, 8.9%, 361
6.6%, and 3.7% on Scene, Web, Doc, and Handw. This 362
demonstrates the effectiveness of the proposed MSA2 for 363
sentence-level recognition under open-set settings. 364

4.3. Evaluation of Character Recognition 365

We conduct character-level evaluations using handwritten 366
and scene characters under both open-set and closed-set 367
settings. For open-set recognition, we follow the con- 368
figurations applied in the previous works [1, 3, 21, 32, 369
48]. Specifically, for handwritten characters, experiments 370
are conducted on the HWDB1.0-1.1 and ICDAR-Char 371
datasets, which comprise a total of 3, 755 characters. The 372
first m classes from HWDB are used for training, where 373
m ranges from {500, 1000, 1500, 2000, 2755}, while the 374
1, 000 classes of ICDAR-Char serve as the evaluation set. 375
For scene characters, we utilize the CTW dataset and select 376
samples from the first m classes as the training set, where m 377
ranges from {500, 1000, 1500, 2000, 3150}. The last 1, 000 378
classes are designated as the test set. Notably, during the 379
training phase, we perform similarity searches only for the 380
representations of characters present in the training set. In 381
the inference phase, the final decision is made by match- 382
ing the model predictions against the complete lexicon of 383
representations derived from both training and test samples. 384

As shown in Table 3, although the MSA2 is designed 385
for open-set text recognition, it still achieves superior re- 386
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Methods Venue
Representation Handwritten/% (m for classes) Scene/% (m for classes)

Linguistics Glyph 500 1000 1500 2000 2755 Full 500 1000 1500 2000 3150

DenseRAN [32] ICFHR’18 ✓ 1.70 8.44 14.71 19.51 30.68 96.66 0.15 0.54 1.60 1.95 5.39
HDE [1] PR’20 ✓ 4.90 12.77 19.25 25.13 33.49 97.14 0.82 2.11 3.11 6.96 7.75
Chen et al. [3] IJCAI’21 ✓ ✓

− 5.60 13.85 22.88 25.73 37.91 96.73 1.54 2.54 4.32 6.82 8.61
CUE [21] PR’23 ✓ 7.43 15.75 24.01 27.04 40.55 96.96 - - - - -
SideNet [13] PR’24 ✓ 5.10 16.20 33.80 44.10 50.30 - - - - - -
HierCode [48] PR’25 ✓ 6.22 20.71 35.39 45.67 56.21 97.68 1.67 2.59 4.54 7.02 9.13
MSA2 - ✓ ✓ 8.24 26.13 40.67 51.44 60.17 98.85 2.05 3.11 4.98 7.65 9.68
∆ - - +2.02 +5.96 +5.28 +5.73 +3.96 +1.17 +0.38 +0.52 +0.44 +0.63 +0.55

Table 3. Comparison of recognition accuracy in character level (%) under open-set setting on ICDAR-char and CTW with previous
methods, where ∆ denote the improvements over each setting. ‘✓− ’ means the glyphs are only used in the testing phase.

Char Linguistics Glyph Standard Other

Compound
Characters

✓ 91.24 88.38
✓ 90.95 87.93

✓ ✓ 91.95 89.82

Basic
Characters

✓ 92.11 88.57
✓ 93.25 89.26

✓ ✓ 93.43 90.41

Table 4. Ablation study on the recognition task in recall rate (%) of
characters with standard and other forms, where ‘Standard’ refers
to Web and Doc, while ‘Other’ includes Scene and Handwriting.

sults compared to existing methods for open-set charac-387
ter recognition. In particular, on the handwritten dataset,388
MSA2 demonstrates absolute accuracy improvements of389
2.02%, 5.96%, 5.28%, 5.73%, and 3.96% at m values of390
{500, 1000, 1500, 2000, 2755} when compared to the state-391
of-the-art method HierCode [48] with the same model con-392
figuration. On the scene text dataset, MSA2 also achieves393
an average increase over 0.5% in character-level accuracy394
across all open-set settings, demonstrating its effectiveness395
in open-set character recognition. As for closed-set char-396
acter recognition, MSA2 also improves performance by397
1.17% compared to HierCode.398

4.4. Ablation Study399

Influence of Recognition Task As shown in Table 4, lin-400
guistic knowledge plays a more significant role than glyphs401
in recognizing compound characters. In contrast, for ba-402
sic characters that cannot be further decomposed, glyphs403
provide greater benefits to recognition. This difference404
likely arises because compound characters contain richer405
linguistic components compared to basic characters. Con-406
sequently, combining these two tasks yields comprehensive407
improvements to recognition across various scenarios.408

Influence of Structure Code Since basic Chinese char-409
acters lack internal structures, ablation is conducted with410
samples of compound Chinese characters on ICDAR-char.411
As reported in Table 5, the worst performance of the ran-412
dom code demonstrates that structures play an essential role413
in recognition. Furthermore, assigning a smaller represen-414
tation space for the structures in deeper layers improves415

LS1 LS2 LS3 LS4 LS5 LS AR RR

Random Structure Code 124 94.03 92.42

4 - - - - 124 96.47 94.23
8 - - - - 128 96.60 94.41

16 4 - - - 136 96.78 94.64
16 8 4 4 - 144 97.03 94.86
16 16 - - - 160 96.94 94.76
16 8 8 - - 160 96.96 94.79
16 8 2 - - 136 96.82 94.45
16 8 - 2 4 128 97.12 94.89
16 8 - 1 - 120 97.08 94.84
16 8 - 2 2 96 97.24 95.05
16 8 - 2 1 80 97.35 95.12

Table 5. Ablation study on the representation space in terms of
accurate rate (%) (AR) and recall rate (%) (RR) of compound Chi-
nese characters. ‘-’ denotes 4 regarded as the default set.

(a) (b)

Figure 9. Ablation study on (a) iterations of GCCL; (b) numbers
of glyph styles in GCCL; where ∆max indicates the maximum
improvement. Results are measured in line accuracy (%) in BCTR.

recognition performance, validating the key motivation of 416
SACE. We also analyze the impact of radical code on recog- 417
nition, which is presented in the Supplementary Material. 418

Influence of GCCL As shown in Figure 9(a), recogni- 419
tion performance benefits from iterations of GCCL, vali- 420
dating its effectiveness. However, excessive iteration does 421
not yield continuous improvement in recognition, as it leads 422
to overfitting and compromises the robust feature extrac- 423
tion ability learned by the glyph encoder through CLIP. 424
As shown in Figure 9(b), increasing the diversity of glyph 425
styles results in a notable improvement in recognizing text 426
with non-standard forms. This improvement occurs because 427
greater diversity enables SAGE to better account for style 428
variations in non-standard forms. 429
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Figure 10. Investigation of (a) distribution of maximum iteration
required for complete decomposition per character; (b) accurate
rate (left), and recall rate (right) vs. distribution iteration.

(a) Without the GCCL (b) With the GCCL

Figure 11. Glyph embedding distribution visualization of whether
applying the GCCL in SAGE.

4.5. Discussion430

How does SACE benefit CTR? We think the advantages431
of SACE can be summarized as follows:432

• The representations created by SACE are consistent with433
human perception, where primary structures are encoded434
with longer bits to exert a greater influence on recognition435
results during the similarity searching process.436

• The representations generated by SACE are more infor-437
mative than those produced by baseline with static repre-438
sentation spaces. Specifically, we calculate the maximum439
iteration required for the complete decomposition of each440
Chinese character in the GB18030-2000 standard1, as441
shown in Figure 10(a). To handle complex characters,442
a large maximum decomposition (e.g., ≥ 5) is typically443
set for each character, resulting in numerous null nodes444
in the decomposition results of simpler characters. SACE445
optimizes component encoding by assigning smaller rep-446
resentation spaces in deeper layers, where nodes are more447
likely to be null, thus reducing the number of meaningless448
bits encoded by these null nodes in linguistic representa-449
tions. This is further supported by Figure 10(b), which450
shows that our method benefits from more iterations com-451
pared to the baseline with static representation space.452

Visualization To validate the effectiveness of GCCL, we453
sample 7 characters and visualize their glyph embeddings454
in a 2-D space using t-SNE, where each character is repre-455
sented by a distinct color. As shown in Figure 11(a), the456
glyph embeddings generated by the glyph encoder without457

1https://openstd.samr.gov.cn/bzgk/gb/
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Figure 12. Visualizations analysis, where correctly and incorrectly
recognized characters are marked in ‘blue’ and ‘red’, respectively.

fine-tuning are not sufficiently discriminative, with some 458
embeddings deviating significantly from their cluster cen- 459
ters in the feature space. When introducing GCC, the glyph 460
embeddings become closer to their cluster centers (see Fig- 461
ure 11(b)), proving that GCCL enhances the recognizer by 462
providing more robust glyph representations. 463

We also present visualizations to analyze the strengths 464
of the MSA2. Benefiting from SACE, MSA2 can identify 465
characters with incomplete or ambiguous local details, as 466
demonstrated in Figure 12 (1) and (5). Additionally, as 467
shown in Figure 12 (7) and (8), the incorporation of visual 468
cues from glyphs provides MSA2 with a clear advantage 469
in recognizing basic characters, such as numbers and Latin 470
letters, compared to the one-hot baseline and HierCode. 471

Limitations MSA2 relies on linguistic components and 472
glyphs to represent characters. Unfortunately, some sam- 473
ples may lack linguistic information (e.g., ancient texts) or 474
are difficult to render with specific forms of glyphs (e.g., 475
alien characters), potentially leading to suboptimal perfor- 476
mance. Additionally, MSA2 has not considered the connec- 477
tions among same-type structures with varying importance 478
during encoding, which will be addressed in future work. 479

5. Conclusion 480

In this paper, we introduce MSA2, a multi-task frame- 481
work for open-set Chinese text recognition (CTR), which 482
incorporates two innovative character modeling strategies: 483
SACE and SAGE. Inspired by human recognition of Chi- 484
nese characters, MSA2 leverages both linguistic and glyph 485
representations to determine character categories. Within 486
MSA2, SACE generates more informative linguistic repre- 487
sentations by allocating larger representation spaces to pri- 488
mary components. Meanwhile, SAGE enhances the robust- 489
ness of glyph representations through glyph-centric con- 490
trastive learning. Our experiments show that emphasizing 491
primary structures significantly improves recognition per- 492
formance, and glyph-centric contrastive learning also ben- 493
efits the recognizer through more discriminative glyph rep- 494
resentations. Comprehensive evaluations demonstrate that 495
MSA2 outperforms previous CTR methods by a substantial 496
margin in both closed-set and open-set scenarios. 497
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