Pattern Recognition Letters 186 (2024) 164-169

Pattern Recognition
Letters
@

Contents lists available at ScienceDirect

Pattern Recognition Letters

journal homepage: www.elsevier.com/locate/patrec

Check for

Discrete diffusion models with Refined Language-Image Pre-trained
representations for remote sensing image captioning™

Guannan Leng ?, Yu-Jie Xiong ®*, Chunping Qiu>*, Congzhou Guo "

aSchool of Electric and Electronic Engineering, Shanghai University of Engineering Science, ShangHai, 201600, China
b Institute of Geospatial Information, Information Engineering University, Zhengzhou, 450001, China

ARTICLE INFO ABSTRACT

Editor: Gangyi Jiang RS image captioning (RSIC) utilizes natural language to provide a description of image content, assisting
in the comprehension of object properties and relationships. Nonetheless, RS images are characterized by
. e variations in object scales, distributions, and quantities, which make it challenging to obtain global semantic
Discrete diffusion model X N X . A . N
Contrastive Language-Image Pre-training information and object connections. To enhance the accuracy of captions produced from RS images, this
Transformer paper proposes a novel method referred to as Discrete Diffusion Models with Refined Language-Image Pre-
Remote sensing image captioning trained representations (DDM-RLIP), leveraging an advanced discrete diffusion model (DDM) for nosing and
denoising text tokens. DDM-RLIP is based on an advanced DDM-based method designed for natural pictures.
The primary approach for refining image representations involves fine-tuning a CLIP image encoder on RS
images, followed by adapting the transformer with an additional attention module to focus on crucial image
regions and relevant words. Furthermore, experiments were conducted on three datasets, Sydney-Captions,
UCM-Captions, and NWPU-Captions, and the results demonstrated the superior performance of the proposed
method compared to conventional autoregressive models. On the NWPU-Captions dataset, the CIDEr score
improved from 116.4 to 197.7, further validating the efficacy and potential of DDM-RLIP. The implementation

codes for our approach DDM-RLIP are available at https://github.com/Leng-bingo/DDM-RLIP.

Keywords:

1. Introduction them with CNN features to obtain structured features that well reflect
local region characteristics. However, when there are a large number

Remote sensing image captioning (RSIC) plays an important role of objects in the image, the selective search cannot work well. Wang

in geographic information retrieval, disaster monitoring, and image et al. [5] proposed the multiscale multi interaction network to account
understanding. Yet, it is also a challenging task that requires describing for the differences between natural images and RS images. Zhang et al.
rich image content using natural language, compared with image object [6] proposed a novel attention mechanism, namely the label-attention
detection, classification, and segmentation tasks. mechanism, which mainly uses the label information of RS images to
Motivated by the captioning algorithms in the Computer Vision guide the generation of image descriptions. Zhang et al. [7] proposed

(CV) field, many researchers have developed deep learning methods
for RSIC by utilizing classical encoder-decoder networks coupled with
attention modules. Qu et al. [1] were the first to propose a CNN-
RNN architecture for RSIC and constructed the UCM-Captions and
Sydney-Captions datasets. To further enrich the dataset, Cheng et al.
[2] annotated the NWPU-RESISC45 dataset [3], which is currently the
largest RSIC dataset in terms of the number of images, captions, and
categories. These datasets form the foundation for subsequent remote
sensing image captioning tasks.

Zhao et al. [4] proposed the structured attention approach, which
uses selective search to find segmentation proposals and multiplies

a multi-source interactive stair attention mechanism, which utilizes
previous semantic vectors as queries and obtains the next word vector
using attention on region features. Shen et al. [8] propose to finetune
the CNN jointly with the variational autoencoder, and use a transformer
to generate the text description with both spatial and semantic features.
By employing CNN to extract image features, it becomes possible to
delve deeper into the internal information of the images. In our paper,
we use Vision Transformer (ViT) for feature extraction, which allows
the extraction of higher-quality features, thereby providing a solid
foundation for image captioning.
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Despite the promising performance of the above autoregressive
methods, there are still some improvements due to the differences
between RS images and natural pictures. Text generation methods
mostly adopt the autoregressive way (AR) that generates the output
tokens one by one. Such a way is able to capture the sequential
dependency relations among tokens, but would be time-consuming
when generating long texts. Thus, non-autoregressive (NAR) generation
methods, which generate all tokens in parallel and greatly reduce the
inference latency, have been proposed [9]. Moreover, text generation
requires relatively less computational and resource-intensive compared
to image generation. This opens up more possibilities for parallel
computing. However, NAR models generally underperform AR ones
on text generation accuracy, since the token dependency relations
cannot be well captured by the parallel generation. To narrow the
performance gap, previous works have proposed various improvement
techniques for NAR methods, e.g., knowledge distillation [10] and
large-scale pre-training [11]. Our work is inspired by the advanced dif-
fusion models which have achieved astonishing performance in many
vision tasks [12]. Compared to the currently dominant autoregressive
methods, the discrete diffusion model (DDM) is more flexible, as it can
predict multiple tokens at once. We are aiming to explore this new
branch of discrete DDM-based captioning methods for RS images.

It is, however, not possible to directly apply the powerful diffusion-
based methods for our tasks. This is because RS images, taken from
a high-altitude perspective, have significant differences from natural
images, such as larger scale and imbalanced foreground-background
ratios. Therefore, our goal is to improve the model architecture and
investigate how to enable DDM to generate accurate descriptions of RS
images.

Inspired by a DDM-based image caption method for natural pic-
tures [13], we tried to integrate DDM with RS-specific representations
by fine-tuning language-image pre-trained models on RS datasets, fol-
lowed by an attention module to encourage the features to focus
on the descriptions-related regions. This way, the DDM is coupled
with specifically refined RS language-image pre-trained representa-
tions, i.e., DDM-RLIP, which can be enhanced to generate captions for
RS images. We instanced CLIP to extract pre-trained representations,
and our main contributions are as follows.

» We are the first to apply DDM on the challenging task of RSIC,
and our results demonstrate its comparative performance to the
traditional autoregressive-based methods.

To enhance the feature’s representation ability and align it more
closely with the text descriptions, we fine-tuned pre-trained
language-image models on RS datasets and employed an attention
module to refine the features.

Our proposed model achieved superior performance compared to
state-of-the-art (SOTA) models on three challenging RSIC
datasets. Additionally, we conducted an investigation on the
effects of our adaptations.

2. Related work

Image captioning serves as a crucial link between images and text,
making it a prominent research area in the field of artificial intelli-
gence. In recent years, some research [14-16] efforts begin to focus
on remote sensing image captioning tasks, aiming to introduce natural
language generation into the field of remote sensing image processing.
Remote sensing image captioning is characterized by unique aspects,
including geographical information, spatial relationships, and domain-
specific terminology within the images. It has provided significant
assistance to the remote sensing image domain, as image captions
enhance people’s understanding of remote sensing images and improve
the quality of descriptions. Furthermore, inspired by the advancements
in powerful diffusion models, there have been new developments in the
field of computer vision as well.
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2.1. Remote sensing image captioning

The size of objects in remote sensing image varies, which can lead
to omissions during feature extraction. To address this problem, the
denoising-based multi-scale feature fusion network [14] first filters
noise in the image with two fully connected layers, following which
the encoder output is obtained by fusing the outputs of CNN features at
three scales. The Multi-Level Attention Model [15] uses three attention
blocks to represent attention to different areas of the image, attention
to different words, and attention to vision and semantics.

Considering the large-scale variation and richness of objects in
remote sensing images, researchers have attempted to extract global
semantic information to facilitate word generation. The mean pool-
ing operation is a common way to capture such information [1,16].
VRTMM [8] (Variational autoencoder and reinforcement-learning-
based two-stage multitask learning model) uses the output of VGG16
[17] (visual geometry group 16) with a soft-max layer to represent the
semantic features. RASG [18] (recurrent attention and semantic gate)
utilizes a recurrent attention mechanism and semantic gate to generate
better image features corresponding to the current word.

Considering the relationship between foreground and background
of remote sensing images, Zheng et al. [19] introduced a foreground-
aware relationship framework that explicitly uses foreground modeling
to perform remote sensing target segmentation. The foreground-scene
relationship module learns the symbiotic relationship between the fore-
ground and the scene, which associates context to enhance foreground
features, thereby reducing false alarms. Zhang et al. [20] handled
the classification of hyperspectral remote sensing images with a dense
network. They collected multiscale features from different layers of all
the network, and these features with scale information were used for
classification guidance.

Moreover, an attention module was leveraged to preserve the aspect
ratio of the object. Yu and Koltun [21] introduced a novel convolutional
module that can mix multiscale contextual information without loss of
resolution, and this module could be inserted into the existing structure
at any resolution. Qiu et al. [22] proposed the gated multiscale module
to integrate features of different levels. Cheng et al. [23] proposed a
new discriminative loss function to address the problems of intraclass
diversity and interclass similarity in remote sensing images.

2.2. Diffusion-based image captioning

The original work introducing the Denoising Diffusion Probabilistic
Models (DDPM) was conducted by Ho et al. [12]. DDPM comprises two
primary phases: firstly, the forward process, also termed the diffusion
process, gradually alters the original image, transitioning it into a
fully noisy image. Secondly, there is the inverse process, commonly
known as the denoising process, which systematically reverts the noisy
image to its initial state. Regardless of the chosen direction (whether
forward or backward), this process is conceptualized as a parameterized
Markov chain. To accelerate the generation process, Song et al. [24]
introduced the Denoising Diffusion Implicit Models (DDIM) . Notably,
DDIM shares an identical training objective with DDPM but does not
enforce the Markov chain constraint on the diffusion process, enabling
the utilization of smaller sampling steps during the generation phase.

Incorporating the diffusion model into the realm of image caption-
ing, Xu [25] presented an innovative approach. This method seamlessly
integrates the strengths of the diffusion model with CLIP, circumvent-
ing the necessity for a distinct alignment process between images and
text. The CLIP model’s output serves as the initial state, embarking on a
stepwise diffusion journey across multiple iterations. During each itera-
tion, the diffusion model introduces a degree of randomness, generating
text and subsequently refining the state based on this generated text
and the current state. Austin et al. [26] proposed a structured denoising
diffusion model based on a discrete-space formulation. Li et al. [27]
introduced a text generation model grounded in the principles of the
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(b) The process of inference.

Fig. 1. Overview of the proposed DDM-RLIP, consisting of a DDM sub-network, an image encoder such as CLIP-based ones, and a transformer-based sub-network. (a) During
training, the caption is tokenized and gradually converted to [mask] by adding noise that depends on the sampled step 7. Then, these noisy tokens are fed into a transformer model
for clean text token prediction, together with image features. The predicted tokens are used for loss calculating together with GT. The [CLS] token of the CLIP model is used to
predict the length N, of the caption. (b) During inference, all [mask] tokens X, is the input and the caption length N, is first predicted. For each step ¢, we have three inputs for
the transformer’s Adaptive LayerNorm layer: + depending on N, and the total noise length T, image features, and previous text tokens X,_,. We retain the token with the highest

score each time and gradually infer the initial caption X,.

diffusion model, aiming for enhanced controllability. Their approach
addresses the challenges associated with minimizing extraneous con-
tent and improving fluency. It initiates with a random noise vector as
input and orchestrates a diffusion process to systematically craft text
imbued with precise and targeted semantics.

3. Method

The overview of DDM-RLIP is illustrated in Fig. 1, consisting of
training and inference process. The training process gradually trans-
forms each text token into a mask token by applying noise with a
certain probability. Then, the noisy tokens, combined with image fea-
tures from pre-trained CLIP encoders, are used to predict clean tokens
with a refined transformer. The [CLS] token (from CLIP) is used to
predict the corresponding caption text length N; using MLP. Predicted
and ground truth (GT) of caption tokens are used for loss calculation.
After training, the inference process removes noise from a sequence
of all [mask] tokens based on the confidence level in a step-by-step
manner, using the text length as the diffusion step 7. For each step ¢,
we have three inputs for the transformer’s Adaptive LayerNorm layer:
t depending on N; and the total noise length T, image features, and
previous text tokens X,_;. To enhance the correlation between image
and text features for RS image description, the utilized transformer
is enhanced with an additional attention module, and the pre-trained
CLIP image encoders are fine-tuned before freezing the parameters in
the training process.

3.1. Noising and denoising process

In the nosing process, DDM randomly and stochastically transforms
the text tokens into all [mask] tokens within T steps at the level of text.

We represent each token in the caption as a discrete state x, and
denote the noisy version token at tth diffusion step as x,, and there are
a total of 7; steps. The noising process at each step depends on whether
X,_; is a [mask] token. When it is not, token x,_; could be replaced by
a special [mask] token with a probability of ¢,, or remain unchanged
with a probability of #,, or could be replaced by another token from the
vocabulary except [mask] with a probability of 6, = 1 — ¢, — #,, namely:

Mps Xp = X4—q
p (x, | x,_l) =146, x, = [mask] (€))]
1 —¢, —n,, otherwise

When x,_, is already a [mask] token, the transition probability from
Stepr—1totis:

p(x %) = {(1) X Imask] @
The aforementioned transition method will eventually convert the cap-
tion tokens into a sequence of special [mask].

The denoising process gradually removes noise to restore the initial
caption token. We start from an all [mask] sequence and use a trans-
former network for inverse projection, i.e., p(x,_; | x;,y), where y is the
image features. In addition, we use a sine function to encode the time
step t as the position encoding:

p =1 % StePgeate /T 3

sin (p/10000%/Imodel ) ,i < diyoger/2

PE,; = .
i {cos (p/10000%/4model ) ,i > dyyo4e1/2 )

where stepg.,. is the wavelength, and d,,4¢ is the hidden dimension.

3.2. Training and inference

The DDM uses masking at the sentence level in the noising process
and directly predict the initial text token instead of noise distribu-
tion [13]. We transform the process from Step ¢ to ¢t — 1 into directly
computing the initial text, setting Step to 0, and training with image
features. The process from Step 7 — 1 to ¢ can be described as follows:

q(x, | x,_,) = Cat(x;;p = x,_, Z,) )

where Cat(x; p) is a categorical distribution over the one-hot row vector
x. And the transition vector Z is: [Z,];; = q(x, = j | x,.; = i). The
process from Step 0 to Step 7 is:

q(x,|x0)=Cat<xr;p=x07,), Z,=2Z ..27 (6)

In summary, we can train the network by adding noise to the initial
text token in the nosing processing, and combining the all [mask] tokens
with image features to predict clean tokens. The predicted tokens and
GT are used for loss calculation.

During the inference, we first use the [C L.S] token from the CLIP en-
coder as a predicted feature to predict the text length 7' corresponding
to the image. Then, starting from the [mask] token x; with length 7', we
directly predict x, using the trained denoising network and the image
representations y: py(x | x;, ). Subsequently, we obtain x,_; by adding
noise on the predicted raw text X, through a Markov chain. After T
steps, we can gradually recover the original text x,.
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3.3. Refined Language-Image Pre-trained (RLIP) representations

To obtain accurate descriptions for RS images, we empirically found
that improving the representations is important. Thus, we proposed to
refine the pre-trained representations in two different ways. One is re-
sorting to a refined transformer with two distinct attention modules to
encourage the representations to be more relevant to the text contents.
This module can be trained together with the DDM sub-network. The
other refinement is related to the pre-trained image encoders, which are
not easy to train from scratch. The performance of CLIP-like pre-trained
encoders is very powerful and can be used in a zero-shot manner.
However, significant differences between RS images and natural images
motivated us to fine-tune CLIP-encoders with RS data.

Adapted Transformer with an attention-on-attention module.
The traditional attention module in transformer f,,(Q,K,V) oper-
ates on Queries, Keys, and Values. It first computes similarity scores
between Q and K, and then performs a weighted average vector
calculation with the scores and V, which can be expressed as:

U = fan(4;. kj,0)) @

where g; € Q is the ith query, k; € K and v; € V are the jth key/value
pair; fy;, is a function that computes the similarity score of each k; and
g;; and v, is the attended vector for the query g;.

Our utilized transformer consists of adapted Attention modules that
measure the correlation between the attention result in ;, calculated
using Eq. (7), and the query g, as shown in Fig. 2. This module
generates a “information vector” and an “attention vector” through
two independent linear transformations, both of which are based on
the attention results and the current query:

i=Wq+Wo+l ®

g:o‘(quq+ Wugﬁ+bg> (€)

where W,,'WL' wWEWE e RPXDH.bE€R? "and D is the dimension of g
and v; o denotes the sigmoid activation function. Then, there is a addi-
tional attention matching the “information vector” and the “attention
vector”, obtaining the participating information i, with element-wise
multiplication ©:

i=goi 10)

The output of the second attention mechanism is combined with
the output of the primary attention mechanism to process the predicted
captions and the image embeddings.

Fine-tuning CLIP encoders with RS datasets. Contrastive learning
is utilized as the original training process of CLIP. Image-text pairs
are fed into the text encoder and image encoder respectively, the em-
beddings of which are used to calculate similarities and cross-entropy
losses. We fine-tuned CLIP encoders on RS image scene classification
datasets and constructed text by using the categories of RS images, such
as “An aerial photograph of {category}”. We fine-tuned for 10 epochs
using a Adam optimizer with a learning rate of 1 x 107°.

To mitigate the overfitting resulting from the limited size of the
available datasets, we incorporated data augmentation techniques for
both images and text. Our approach included image augmentation
methods such as random cropping, random resizing, and horizontal
and vertical flipping, as well as text augmentation techniques such as
back-translation. The back-translation method involved translating the
existing captions into Chinese, French, Italian, and Portuguese and then
converting them back into English.
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Fig. 2. (a) The attention module generates some weighted average V based on the
similarity scores between Q and K; (b) The Attention-on-Attention first generates a
“information vector” I and an “attention vector” G, followed by an element-wise
multiplication.

Table 1

Comparative results on the UCM-Captions dataset.
Model Backbone B@1 B@4 M R C
SAT [28] VGG+RNN 79.9 62.4 41.7 74.4 310.4
FC-ATT [29] VGG+LSTM 81.3 63.5 41.7 75.0 299.9
SM-ATT [29] VGG+LSTM 81.5 64.5 42.4 76.3 318.6
LAM [6] VGG+LSTM 81.9 71.6 48.3 79.0 361.7
MLA [15] ResNet+LSTM 84.0 69.1 53.3 81.9 311.9
Struc-ATT [4] ResNet+LSTM 85.3 71.4 46.3 81.4 334.8
SCST [7] VGG+LSTM 87.2 70.3 46.5 82.5 371.2
RASG [18] VGG+LSTM 85.1 69.7 45.7 80.7 333.8
VRTMM [8] VGG+Transformer 83.9 68.2 45.2 80.2 349.4
JTTS [30] ResNet+LSTM 86.9 73.7 49.0 83.6 371.0
MMN [5] ResNet+LSTM 83.0 65.1 45.3 78.5 338.1
DDM-RLIP Vit-b/16+DDM 89.7 77.2 48.9 85.1 372.6

B@1, B@4, M, R and C denote BLEU-1, BLEU-4, METEOR, ROUGE_L and Cider
respectively.

Table 2

Comparative results on the Sydney-Captions dataset.
Model Backbone B@1 B@4 M R C
SAT [28] VGG+RNN 79.0 54.7 39.2 72.0 220.1
FC-ATT [29] VGG+LSTM 80.7 55.4 40.9 71.1 220.3
SM-ATT [29] VGG+LSTM 81.4 58.0 41.1 71.9 230.2
LAM [6] VGG+LSTM 74.0 53.0 36.8 68.1 235.1
MLA [15] ResNet+LSTM 81.5 61.3 45.6 70.6 199.2
Struc-ATT [4] ResNet+LSTM 77.9 58.6 39.5 72.9 237.9
SCST [71 VGG+LSTM 76.4 57.2 39.4 71.7 281.2
RASG [18] VGG+LSTM 80.0 59.0 39.0 72.1 263.1
VRTMM [8] VGG+Transformer 74.4 56.9 37.4 66.9 252.8
JTTS [30] ResNet+LSTM 84.9 64.9 44.5 76.6 280.1
MMN [5] ResNet+LSTM 84.2 60.1 421 60.1 285.1
DDM-RLIP Vit-b/16+DDM 79.7 59.5 41.6 74.4 274.5

4. Datasets and experimental setup

This study evaluates DDM-RLIP’s performance using three popu-
lar datasets: Sydney-Captions (613 images and 3065 sentences) [1],
UCM-Captions (2100 images and 10,500 sentences) [1], and NWPU-
Captions (31,500 images and 157,500 sentences) [2]. The datasets were
randomly split into 8:1:1 ratios for training, validation, and testing,
and the evaluation metrics included BLEU, METEOR, ROUGE_L, and
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Table 3
Ablation results on all three datasets.

Pattern Recognition Letters 186 (2024) 164-169

Sydney-Captions UCM-Captions NWPU-Captions

BLEU-1 BLEU-4 METEOR ROUGEL CIDEr BLEU-1 BLEU-4 METEOR ROUGEL CIDEr BLEU-1 BLEU-4 METEOR ROUGEL CIDEr
DDM+CLIP 79.6 60.8 40.7 73.4 270.8 87.8 74.3 47.1 84.0 364.8 87.9 62.8 39.9 74.2 189.2
DDM+CLIP+Refined-T 78.7 60.0 39.8 71.9 271.5 89.0 75.4 48.3 84.5 381.8 88.8 68.9 421 76.1 195.2
DDM+Refined-C 78.0 60.8 39.9 71.9 270.3 87.9 74.5 47.3 83.9 388.4 89.2 68.6 41.5 75.4 195.0
DDM-RLIP 79.7 59.6 41.6 74.4 274.5 89.7 77.2 48.9 85.1 372.6 89.6 69.2 42.5 76.8 197.7

CIDEr [5,30]. The model was trained on 4 A100 GPUs, with a batch
size of 128 per GPU, using ViT-B/16 as an exemplary implementation,
with a maximum sentence length of 20. The images were resized to
256 x 256 pixels, and the training lasted for 200 epochs with a warm-
up period of 5 epochs, using the AdamW optimizer with a weight decay
of 0.01 and a learning rate ranging from 1 x 10~* to 0 with cosine
annealing.

4.1. Experiments results

On the NWPU-Captions dataset, we achieve BLEU-4 scores of 69.2
and CIDEr scores of 197.7, respectively, compared to 47.8 and 116.4
in the latest literature [2]. On the UCM-Captions and Sydney-Captions
datasets, there are more related studies for comparison, as listed in
Tables 1 and 2, respectively. A CNN-based image feature extractor can
capture deep-level image information, while LSTM can capture and
store long-term temporal information, making it more suitable for text
generation. Transformer introduces attention mechanisms to identify
the most relevant text to the image. The structure of the diffusion
model is flexible, the sampling process is deterministic, the training
process is stable, and it is easy to train, resulting in more accurate image
captionings.

Compared to SOTA models, our proposed model demonstrated per-
formance improvements in terms of BLEU-4 and CIDEr scores by 6.9
and 1.4 on the UCM-Captions dataset, and by 21.4 and 81.3 on the
NWPU-Captions dataset, respectively. Additionally, our model achieved
a 1.5 ROUGE_L score improvement on the Sydney-Captions dataset,
with other results comparable to the baselines. Notably, JTTS [30]
utilized additional labels for guided training, and DDM-RLIP achieved
competitive results, with higher scores on the UCM-Captions dataset
and comparable results on the Sydney-Captions dataset. Fine-tuning is
based on contrastive learning of the multimodal model CLIP. CLIP’s
training data consists of text-image pairs: an image and its correspond-
ing text captioning. The model can learn the matching relationship
between text and images, obtaining features of images that are more
relevant to the text. The diffusion model exhibits strong noise resistance
and smoothness, with a rapid descent rate of the loss function, making
it easier to converge and obtain more accurate image captionings.

4.2. Discussion

To validate the effect of RLIP representations, i.e., the adapted
transformer with an additional attention module and the fine-tuned
CLIP image encoder in our proposed captioning method, we carried out
some ablation experiments on the three datasets, as listed in Table 3.

Our ablation analysis demonstrated that fine-tuning the CLIP image
encoder, in combination with the adapted transformer, notably en-
hances the performance of RSIC. Specifically, on the Sydney-Captions,
UCM-Captions, and NWPU-Captions datasets, the CIDEr scores im-
proved by 3.7, 7.8, and 8.5, respectively. One possible explanation is
the use of an attention module in the transformer, which aligns the
textual content with the related image regions. This enables the adapted
transformer to suppress irrelevant or erroneous information and retain
only relevant information from the extracted image representations,
thereby empowering the model to generate more accurate descriptions.
Another reason can be attributed to the fine-tuned CLIP image en-
coders, which are better equipped than the original models trained on
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GT: A baseball diamond composed of sand
and weeds.

Ours: It is a very old baseball diamond com-
pose of sand and weeds.

GT: It is a dense residential area with lots of
houses arranged in lines.

Ours: It is a dense residential area with lots
of houses arranged neatly.

GT: Lot of green trees in the dense forest.

Ours: This is a dense forest with lots of dark
green trees.

Fig. 3. Examples of the UCM RSIC dataset.

natural images to output RS image representations of varying scales.
Overall, RLIP representations facilitate DDM in gradually recovering
the original text tokens.

Our study was the first to apply DDM-based models to RSIC and
achieved promising results, despite significant room for improvement.
Notably, the Sydney-Captions dataset did not experience significant
performance gains with our proposed method, which could be at-
tributed to the dataset’s limited size. This drawback is linked to the
DDM-RLIP’s dependence on the training data volume. Compared to
the methods in Tables 1 and 2, DDM-RLIP exhibits superior perfor-
mance, with a substantial improvement in evaluation metric results.
The combination of the diffusion model and self-attention mechanism
enables more accurate image captioning for remote sensing. Moving
forward, we aim to improve DDM-RLIP by optimizing the diffusion
process, developing high-performance feature relation extractors, and
addressing the data dependence issue.

In addition, our research highlights the necessity to create a com-
prehensive and diverse RSIC dataset containing specific content de-
scriptions of the images. Fig. 3 showcases selected GT and predicted
captions from the UCM-Captions dataset, indicating that the current
GT descriptions are insufficiently informative. For instance, the cars
located at the corner are overlooked in the first example. This does not
only constrain the supervised learning process but also complicates the
evaluation of the performance of different methods. Thus, developing a
more extensive and representative dataset is a crucial aspect for future
research.

5. Conclusion

Precise generation of descriptions for RS images is an imperative
and challenging research concern. This letter presents the novel ap-
plication of DDM to RSIC, DDM-RLIP. This method is on the basis
of a DDM-based captioning method for natural pictures. DDM-RLIP
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utilizes an adapted transformer with an additional Attention module
to attend to the important words in the generated caption, after fine-
tuning the CLIP image encoder on RS datasets to better consider RS
image characteristics. Our method demonstrates superior effectiveness
in processing intricate targets within multi-scale RS images, yielding
results that surpass those established by SOTA models on three common
RS captioning datasets.
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