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Abstract

Fine-tuning large language models (LLMs)
with high parameter efficiency for downstream
tasks has become a new paradigm. Low-Rank
Adaptation (LoRA) significantly reduces the
number of trainable parameters for fine-tuning.
Although it has demonstrated commendable
performance, updating parameters within a sin-
gle scale may not be the optimal choice for com-
plex downstream tasks. in this paper, we extend
the LoRA to multiple scales, dubbed as LoRA2.
We first combine orthogonal projection theory
to train a set of LoRAs in two mutually or-
thogonal planes. Then, we improve the impor-
tance score algorithm, which reduce parameter
sensitivity score calculations by approximately
98.5%. By pruning singular values with lower
importance scores, thereby enhancing adapt-
ability to various downstream tasks. Extensive
experiments are conducted on two widely used
pre-trained models to validate the effectiveness
of LoRA2. Results show that it significantly
reduces the number of trainable parameters to
just 0.72% compared to full fine-tuning, while
still delivering highly impressive performance.
Even when the parameters are further reduced
to 0.17M, it still achieves comparable results to
the baseline with 8 times more parameters. Our
code is available here: https://anonymous.
4open.science/r/LoRA-2-5B4C

1 Introduction

Large Language Models (LLMs) have become the
cornerstone of NLP tasks (Devlin et al., 2019;
Liu et al., 2021; He et al., 2021; Radford et al.,
2019). The powerful emergent abilities (Wei et al.,
2022) enables LLMs to adapt to downstream tasks
through fine-tuning. The simplest approach is to
fine-tune all the parameters of LLMs (Qiu et al.,
2020; Liu et al., 2021). However, as the model’s
parameters gradually expand, PaLM (Chowdhery
et al., 2023) contains up to 540 billion parameters;

*Corresponding author.

dd

(A) (B)

Pretrained

Weights

𝑤 ∈ 𝑅𝑑×𝑑
𝐴 = 𝒩 0, 𝜎2

𝐵 = 0

r

Pretrained

Weights

𝑤 ∈ 𝑅𝑑×𝑑

𝛬 = 0

𝒩 0,𝜎2

𝒩 0, 𝜎2

𝒩 0, 𝜎2

k

𝒩 0,𝜎2

Figure 1: Blue blocks represent frozen parameters,
while orange represents trainable parameters. (A) LoRA
only utilizes a set of low-rank matrices to approximate
increments. (B) LoRA2 trains a set of low-rank matrices
in two mutually orthogonal planes.

GPT-4 (Achiam et al., 2023) contains up to 100
trillion parameters. The massive memory and time
resources required to fine-tune all the parameters
of these models are completely unacceptable.

To address this issue, LoRA (Hu et al., 2022) pro-
pose learning incremental updates to pre-trained
weights through the product of two small matri-
ces. LoRA avoids forward propagation latency
caused by inserting additional neural modules
while demonstrating stable performance. Com-
pared to fine-tuning, only less than 0.5% additional
trainable parameters are needed, and training over-
head can be reduced by up to 70%. LoRA achieves
performance comparable to or even better than fine-
tuning. But LoRA still has limitations as it prespec-
ifies the rank r of each incremental matrix identical.

In response to this issue, AdaLoRA (Zhang et al.,
2023) dynamically allocates parameter budgets be-
tween weight matrices. Sensitivity scores are com-
puted for all parameters of the matrices, which are
aggregated into importance scores for singular val-
ues. The lowest-ranking singular values are pruned.
Such operations enable adaptive manipulation of
the rank. Although the performance of AdaLoRA
is improved, but results in slower convergence.
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Figure 2: An illustration of Multi-Scale Orthogonal Low-Rank Approximations (LoRA2): Based on the principle
of orthogonal projection, We train a set of inherently orthogonal LoRAs on orthogonal planes as the incremental
matrices.

In this paper, We first combine orthogonal pro-
jection theory to train a set of LoRAs on two differ-
ent planes and make them orthogonal through dual
regularization. The external regularizer minimizes
the overlap of LoRA blocks, thereby enlarging the
learning space of multi-scale LoRAs. The dual
internal regularizers enhance the regularity of pa-
rameter updates, accelerating convergence. Similar
to AdaLoRA, we adopt dynamic parameter bud-
get allocation method. We extend the computation
method of importance scores to adapt to the com-
plex matrices of LoRA2. Due to the properties of
matrix multiplication, where the rows of the preced-
ing matrix must be multiplied by the columns of the
succeeding matrix, we add the importance scores
of the column matrix to the importance scores of
the row matrix. But further discover through rea-
soning that since the calculation of each singular
value’s importance score includes the sensitivity
scores of all parameters in the column matrix, the
sensitivity scores of the column matrix have no
impact on parameter pruning. Therefore, we ex-
clude the column matrix calculations when comput-
ing importance scores. LoRA2 adapts to various
downstream by pruning with importance scores.
Extensive experiments are conducted on various
tasks and models to demonstrate the effectiveness
of LoRA2. Specifically, natural language under-
standing GLUE (Wang et al., 2018) is evaluated
using DeBERTaV3-base (He et al., 2023). The find-
ings, including qualitative and quantitative results,

indicate that LoRA2 outperforms existing methods.
The contributions of this paper are as follows:

• We propose LoRA2, a novel method that trains
two internally LoRAs on orthogonal planes. It
greatly increases the model’s learnable space
in a low-rank environment. Compared to full
fine-tuning, it reduces the number of trainable
parameters to 0.72%.

• We improve the importance score algorithm
to accommodate the structure of LoRA2. It
reduce the parameter sensitivity score calcula-
tions by approximately 98.5% without caus-
ing any degradation in performance. By dy-
namically allocating parameter budgets based
on importance scores, we achieve adaptability
across various downstream tasks.

• Extensive experiments are conducted to
demonstrate the effectiveness of our method.
Particularly, our model could consistently out-
perform parameter-efficient baselines with
fewer parameters on a wide range of down-
stream tasks.

2 Related Work

Parameter-Efficient Fine-Tuning (PEFT) is a strat-
egy to adapt large-scale pre-trained models effec-
tively and resource-efficiently for specific tasks. In
fields such as NLP, pre-trained models like BERT
and GPT-3 are highly favored due to their power-
ful representation learning capabilities. However,
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directly fine-tuning these models with all their pa-
rameters to fit new tasks often requires significant
computational resources and time.

PEFT aims to overcome this challenge by updat-
ing only a small subset of crucial parameters in the
model, rather than all millions or even billions of
parameters. It achieves efficient and precise task
transfer. Here are several major PEFT methods:

Adapter Module (Houlsby et al., 2019; Li and
Liang, 2021): Inserting compact trainable mod-
ules (such as residual blocks) into various lay-
ers of the pre-trained model and fine-tuning only
these adapters while keeping the original model
parameters unchanged. This approach preserves
pre-training knowledge while allowing adapters to
capture task-specific information.

Prompt Tuning (Sahoo et al., 2024): represents
an efficient approach to adapt Transformer-based
models to new tasks by optimizing only the prompt
vector, rather than adjusting the model weights
directly. This method involves inserting a fixed-
length trainable vector, known as a prompt, at
the input stage, which interacts with the standard
fixed inputs to guide the model’s output generation
in a task-specific manner. The key advantage of
prompt tuning lies in its ability to adapt the model
to new tasks with minimal disruption to the under-
lying model architecture. By merely adjusting the
prompts, the approach avoids the computationally
expensive and potentially destabilizing process of
retraining large portions of the model. This results
in a significant reduction in the number of param-
eters that need to be trained, making the process
more efficient and scalable.

LoRA (Hu et al., 2022): Fine-tuning by adding
low-rank correction terms to the model weight ma-
trices instead of directly updating the entire weight
matrix. It utilizes low-rank approximation theory to
effectively adjust the model’s behavior with smaller
parameter increments. formulated as:

W = W (0) +∆ = W (0) +BA, (1)

where ∆ ∈ Rdin×dout, A ∈ Rr×dout, and
B ∈ Rdin×r, with r∈(din,dout). The dimensions
of din and dout are the same as those of the pre-
trained matrix W . During fine-tuning, only A and
B are updated. The rank r is chosen to be much
smaller than the dimension of W . With less than
0.5% additional trainable parameters, the training
overhead can be reduced up to 70%. Therefore,
using LoRA to fit the incremental matrix increases

the sparsity of the incremental matrix, and theoret-
ically demonstrates the role of sparsity in model
stability. As the compression ratio p decreases, the
upper bound also decreases. Ref. (Fu et al., 2023)
derives Equation 2 based on the pointwise hypothe-
sis stability (PHS) (Bindel et al., 2002) to prove that
using LoRA for fine-tuning implies better stability.

ES,i∼U(n)|ℓ(A(Si), zi)− ℓ(A(S), zi)|

≤ 2ρ2

(Λmin + 2(1− p))n
, (2)

A(S) is defined as the model parameters obtained
by running algorithm A on data S. Λmin =
min{Λ1, . . . ,Λm}. ℓ(·) represents the loss func-
tion. The variable ρ represents this measure of
stability, reflecting the maximum impact of input
variations on the output in the loss function. Equa-
tion 2 demonstrates that as the sparsity parame-
ter p decreases, the upper bound also decreases.
Therefore, sparse models are associated with better
stability.

AdaLoRA (Zhang et al., 2023) dynamically al-
locates parameter budgets among weight matrices
based on LoRA, and parametrizes the incremental
updates to the pre-trained weight matrices using
singular value decomposition:

W = W (0) +∆ = W (0) + PΛQ, (3)

where P and Q denote the left and right singular
values, and the diagonal matrix Λ contains the top
r largest singular values. Initially, Λ is initialized
to zero, and P and Q are randomly initialized with
Gaussian distribution to ensure PΛQ = 0 at the
beginning of training. Specifically, the model re-
tains only the top-scoring entries based on their
newly proposed metric of sensitivity, heuristically
constructed from the product of weight gradients.
Although the AdaLoRA method achieved incre-
mental results in benchmark testing, it still exhibits
significant redundancy in terms of parameters. The
updates to the matrix are irregular, resulting in slow
fitting speeds when encountering complex tasks.
Here are two unresolved issues: (1) Under low-rank
conditions, the model’s performance is adversely
affected, rendering it unable to adapt effectively to
low-resource environments. (2) When r = 1, the
dynamic allocation of parameter budgets fails to
work.
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3 Our Method

Our method consists of two main parts: (1) Multi-
Scale Orthogonal Approximation. We use multi-
scale orthogonal matrices to approximate the incre-
mental matrix and minimize the overlap of LoRA
through dual orthogonality constraints. (2) Com-
plex Matrix Importance Pruning. We extend the
orthogonality constraints to minimize spatial over-
lap.

3.1 Multi-Scale Orthogonal Approximation
The overall pipeline of LoRA2 is illustrated in Fig-
ure 2. We utilize Singular Value Decomposition
(SVD) to project the parameter increment matrix
∆ onto a mutually orthogonal plane. Aiming to re-
duce model complexity and enhance computational
efficiency, while preserving crucial information as
much as possible through the singular value matrix
Λ. Then, we iteratively apply low-rank matrices.
As shown in Figure 2, training two low-rank ma-
trices within two orthogonal plane. Ultimately, the
parameter increment matrix is added to the pre-
trained parameters to adapt to various downstream
tasks, offering a plug-and-play capability. Our for-
ward propagation proceeds as follows:

W = W (0) +∆ = W (0) + PΛQ

= W (0) + (uv)Λ(UV), (4)

where v ∈ R(din,k), u ∈ R(k,r), V ∈ R(k,dout)

and U ∈ R(r,k) are two sets of orthogonal LoRA
matrices. The variable k is a hyperparameter used
to determine the dimension to which the data is
projected. The matrix Λ is a diagonal matrix. Λ is
initialized with zero while u, v, U and V adopt a
random Gaussian initialization to ensure ∆ = 0 at
the beginning of training. LoRA2 employs regular-
ization terms to increase the orthogonality of the
matrices. This is similar to the AdaLoRA, which
converts a constrained optimization problem into
an unconstrained version, thereby enlarging the rep-
resentational space of the matrices. To utilize reg-
ularization terms in LoRA2, we expand the scope
of the regularization terms. We further introduce
regularizers between the uv and UV matrices:

R(P,Q) =
∥∥P TP − I

∥∥2
F
+

∥∥QQT − I
∥∥2
F

R(U ,V) =
∥∥UTU − I

∥∥2
F
+
∥∥VVT − I

∥∥2
F
,

R(u, v) =
∥∥uTu− I

∥∥2
F
+
∥∥vvT − I

∥∥2
F

(5)
dual regularization helps enhance the optimiza-

tion stability of the matrix. By minimizing the

overlap in LoRA, the learning space of the method
is expanded. In Section 4.4, we present an abla-
tion study to demonstrate the effectiveness of our
regularization approach.

Algorithm 1 Pruning Algorithm of LoRA2

1: Input: Dataset D; total iterations T .
2: for t = 1, . . . , T do
3: Sample a mini-batch from D;
4: Compute gradient ∇L(v,Λ,V);
5: Compute I

(t)
ij and U

(t)
ij as (?? and ??);

6: Compute Importance I(Λ, i)as (9);
7: Compute threshold I, for i = 1, . . . , r;
8: Mask (I(Λ, i) < I).
9: end for

10: Output: The fine-tuned parameters (Λ, i).

3.2 Complex Matrix Importance Pruning
In LoRA2, the matrix Λ is iteratively pruned to
adjust the rank after each gradient descent step. We
adopt the same rank pruning method as AdaLoRA,
by applying the SVD-based adaptation to every
weight matrix including Wq, Wk, Wv, Wf1 and
Wf2 of each transformer layer. We summarize the
detailed algorithm in Algorithm 1.

where 0 < β1, β2 < 1. I
(t) is the sensitivity

smoothed by an exponential moving average, and
U

(t) is the uncertainty term quantified by the local
variation between I

(t) and I(t). They then define
the importance as the product of I(t) and U

(t).
since LoRA2 trains two LoRA blocks at multiple

scales, there are four matrices related to singular
values. The dimensions of matrices u and U are
the same as those of the singular value matrix Λ,
whereas the dimensions of v and V differ from Λ.
Since the number of columns in matrices u and U
and the number of rows in matrices v and V are all
equal to the hyperparameter k, and each parameter
in matrices u and U needs to be multiplied by ma-
trices v and V . We average the importance scores
of each column in u and U and add it to the im-
portance scores of each row in v and V . Our total
importance score calculation formula is as follows:

C(K, v, ij) =
K∑
j=1

Sij(v), (6)

S(K,u) =
K∑
i=1

din∑
j=1

Sji(u), (7)
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I(Λ, i) = S(Λ, i) +
C(K, v, ij) + S(K,u)

K

+
C(K,V, ij) + S(K,U)

K
, (8)

Equation 6 represents the sum of row sensitivity
scores for a low-rank matrix v with k rows. Equa-
tion 7 represents the sum of the column sensitivity
scores for a low-rank matrix u with k columns.
I(Λ, i) denotes the importance score for the ith sin-
gular value Λ, calculated by averaging the sums of
row sensitivity scores from matrices v and V , and
column sensitivity scores from matrices u and U .
Then adding the inherent sensitivity score of the
singular value Λ. Since the importance score of
each singular value Λ includes the average of the
sensitivity scores of all parameters in matrices u
and U , the ranking is unaffected. Thus, in practical
terms, we can disregard the sensitivities of matri-
ces u and U . Surprisingly, this approach reduces
the calculation of parameter sensitivity scores by
approximately 98.5%. Our method for calculating
importance scores is as follows:

I(Λ, i) = S(Λ, i) +
C(K, v, ij)

K
+

C(K,V, ij)
K

.

(9)

4 Experiments

We implement LoRA2 for fine-tuning
DeBERTaV3-base (He et al., 2023) and
RoBERTa-large (Liu et al., 2021), We evalu-
ate the effectiveness of the proposed algorithm
on natural language understanding tasks from the
GLUE benchmark (Wang et al., 2018).

4.1 Experimental Settings

Implementation Details. We use PyTorch (Paszke
et al., 2019) to implement all the algorithms.
Our implementation is based on the publicly
available Huggingface Transformers3 (Wolf et al.,
2020) code-base. All the experiments about
DeBERTaV3-base (He et al., 2021) are conducted
on NVIDIA 4090 laptop GPU and experiments
about RoBERTa-large (Liu et al., 2021) are
conducted on NVIDIA A800 GPU. Since the total
number of parameters in our model is primarily
controlled by the hyperparameter K, the rank
R has almost no impact on the total amount of
trainable parameters. Therefore, we keep the K

of LoRA2 consistent with the R of the baselines.
This allows for comparisons between models with
a similar amount of trainable parameters. We
mainly use DeBERTaV3-base (He et al., 2023) as
the backbone model. Additionally, we also use
RoBERTa-large (Liu et al., 2021) for analysis.

Baselines. Our baselines comprise full-parameter
fine-tuning and other well-recognized parameter-
efficient methods, including Bitfit (Zhang et al.,
2022) ,LoRA (Hu et al., 2022) , AdaLoRA (Zhang
et al., 2023) and SoRA (Ding et al., 2023).

Datasets. For evaluation, we adopt the GLUE
benchmark (Wang et al., 2018), a widely recog-
nized benchmark for natural language understand-
ing, including CoLA (Warstadt et al., 2019), SST-2
(Socher et al., 2013), MRPC (Dolan and Brockett,
2005), QQP (Wang et al., 2018), STS-B (Wang
et al., 2018), MNLI (Williams et al., 2018), QNLI
(Rajpurkar et al., 2016) and RTE (Dagan et al.,
2006; Giampiccolo et al., 2007; Bentivogli et al.,
2011).

4.2 Results
We first conduct an evaluation on GLUE bench-
mark. The experimental performance of LoRA2

and other baselines are shown in Table 1. Our
method results indicate that LoRA2 consistently
outperforms the baselines in most tasks. For in-
stance, on the RTE, the accuracy of LoRA2 reaches
89.53%, which is 2.17% higher than AdaLoRA
(r = 2). On average, under the condition of
K/R = 1, LoRA2 outperforms LoRA and SoRA
on the GLUE benchmark by 2.03% and 1.41%.
When the parameter amount increases to K/R = 8,
the performance of LoRA2 further improves, ex-
ceeding LoRA and SoRA by 1.29% and 0.31%
on average. Specifically, even when comparing
LoRA2 (k = 1) to other baselines with (r = 8),
it still slightly outperforms the baselines. We also
conduct an experiment on RoBERTa-large (Liu
et al., 2021) to compare the performance of larger
models. LoRA2 exhibits remarkable capabilities.
It achieves results comparable to the 335M param-
eters (full fine-tuning) while using only 0.4M pa-
rameters, thereby achieving a compression rate of
99.97%. Further comparison between LoRA2 and
LoRA reveals that our method improves perfor-
mance by 2% while reducing parameters by 0.37M.
These outcomes confirm that LoRA2 maintains ro-
bust performance in large-scale pre-trained models,
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Model Method #Params CoLA SST-2 MRPC QQP STS-B MNLI QNLI RTE Avg.

DeBV 3
base Fine-Tune 184M 69.21 95.64 89.22 92.05/89.31 91.59 89.98/89.95 93.78 82.49 87.82

DeBV 3
base Bitfit 0.1M 68.70 94.38 87.16 87.86/84.20 89.71 87.45/87.45 91.90 76.12 85.18

DeBV 3
base AdaLoRA (r = 2) 0.32M 70.04 95.80 90.44 91.78/89.16 91.63 90.66/90.70 94.49 87.36 88.86

DeBV 3
base LoRA (r = 1) 0.17M 68.60 94.95 88.24 91.20/88.37 91.41 90.09/90.28 93.35 81.29 87.23

DeBV 3
base SoRA (r = 1) 0.12M 70.24 95.14 89.22 91.52/88.73 91.41 90.08/90.41 93.43 83.02 87.85

DeBV 3
base LoRA2(k = 1) 0.17M 70.63 95.64 90.93 91.62/88.05 91.69 90.19/90.38 93.92 89.53 89.06

DeBV 3
base AdaLoRA (r = 8) 1.27M 71.45 96.1 90.69 92.23/89.74 91.84 90.76/90.79 94.55 88.09 89.31

DeBV 3
base LoRA (r = 8) 1.33M 69.73 95.57 89.71 91.95/89.26 91.86 90.47/90.46 93.76 85.32 88.38

DeBV 3
base SoRA (r = 8) 0.91M 71.48 95.64 91.98 92.39/89.87 92.22 90.35/90.38 94.28 87.77 89.36

DeBV 3
base LoRA2(k = 8) 1.33M 72.30 95.76 91.42 92.25/89.74 91.92 90.43/90.23 94.28 88.45 89.68

Table 1: Test results of LoRA2 and other baselines on the GLUE benchmark. We report the matched and mismatched
accuracy for MNLI, Matthew’s correlation for CoLA, Pearson correlation for STS-B, and accuracy for other tasks.
Higher is better for all metrics. We use the same hyperparameters, which are specified in Appendix A. The optimal
training values are used as results. We denote the best result in bold and underline the second-best result.

effectively demonstrating the versatility of LoRA2.
The results prove that the advantage of LoRA2 is
consistent across different model sizes, achieving
results comparable to a baseline with four times the
parameter quantity.

4.3 Rank Analysis

For a fixed model, it is inevitable that adapting
to different downstream tasks can be challenging.
At the same time, the importance of the model’s
parameters varies. Some parameters contribute
minimally to the final outcomes, not only failing to
enhance the model’s capabilities but also impact-
ing the convergence speed. Therefore, adaptively
adjusting the parameter budget is crucial. In this
section, we will show and analyze the final rankings
of parameters after stable training on four datasets
using the LoRA2 method, as illustrated in Figure 3.
The analysis results reveal that even after fitting
with a low-rank matrix, the predefined rank still
goes far beyond what is required for fine-tuning
specific tasks. More than half of the ranks have
minimal impact on the final outcome. Comparing
different tasks, it is evident that MNLI requires
the highest rank, while SST2 demands the lowest.
Further analysis reveals that extensive pruning is
needed for the top layers, with only the parameters
in the FF.W1 layer being significant. In contrast,
the demand for incremental parameters increases
for the lower layers, demonstrating a clear heavy-
tail structure. This phenomenon also indicates that
using a constant parameter budget negatively af-
fects the fine-tuning results, necessitating a case-
by-case consideration.

Datasets AdaLoRA LoRA2

CoLA 1.01s/it 1.14
SST-2 1.04 1.19
MRPC 1.45 1.68
QQP 1.44 1.64
STS-B 1.05 1.23
MNLI 1.31 1.50
RTE 1.44 1.65

Avg. 335M 0.8M

Table 2: The average training time per epoch on six
datasets. For each task, the experiments with AdaLoRA
and LoRA2 have the same batch size 32.

4.4 Orthogonal Constraint Analysis

We evaluate five orthogonal methods on the GLUE
benchmark. Experiments use the same hyper-
parameters, with only the method of orthogonal
constraints changing. The experimental results
are shown in Table 4. Applying orthogonal con-
straints simultaneously to uv&UV&PQ achieves
the best results, outperforming the other three or-
thogonal methods by about 0.3%. Further analysis
shows that applying orthogonal constraints to either
uv&UV or PQ yields similar results, and apply-
ing orthogonal constraints only to UV yields the
worst results. We believe that constraining only UV
without constraining PQ in LoRA2 leads to spa-
tial overlap in the training of Multi-Scale LoRA,
resulting in reduced learning space. In contrast,
applying dual constraints maximizes the orthogo-
nality between matrix planes, thereby maximizing
the learnable space.
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MNLI QQP

MRPC SST2

Figure 3: The final rankings after training with LoRA2 (r = 8) on four datasets (i.e., MNLI, QQP, MRPC, and
SST2). The X-axis is the index of DeBERTaV3-base layers, and the Y-axis indicates the different layers to which
LoRA2 is applied. The lighter the color, the lower the degree of pruning.

MRPC STS-B MNLI RTE Avg.

LoRA2
(uv) 90.20 91.61 90.27 89.17 90.31

LoRA2
(UV) 90.20 91.57 90.23 89.17 90.29

LoRA2
(uv&UV) 90.44 91.61 90.33 89.53 90.48

LoRA2
(P&Q) 90.44 91.59 90.33 88.81 90.29

LoRA2
(All) 90.93 91.69 90.38 89.53 90.63

Table 3: Results using different regularization methods. LoRA2
(uv) indicates the application of orthogonal constraints

to the matrix uv of LoRA2. All represents the simultaneous application of orthogonal constraints to uv, UV , and
PQ.

Method #Params CoLA MRPC STS-B RTE Avg.

LoRA2
(Q,K) 37.4k 68.66 89.46 91.69 88.09 84.53

LoRA2
(Q,V ) 37.4k 67.70 89.95 91.66 84.84 83.54

LoRA2
(Q,K,V ) 56.2k 70.44 89.46 91.04 86.28 84.31

LoRA2
(ALL) 167.6k 70.63 90.93 91.69 89.53 85.70

Table 4: The results of applying LoRA2 (k = 1) to different layers. ALL represents the output of the query, key,
value attention and FF layers respectively. #Params refers to the number of trainable parameters.

4.5 Applying LoRA2 to Different Weights

In this section, we apply LoRA2 (k = 1) to dif-
ferent types of weight matrices to determine how
to achieve optimal performance on downstream
tasks. We employ the DeBERTaV3-base model for
fine-tuning tasks on the CoLA, MRPC, STS-B, and
RTE datasets. As shown in Table 3, on the STS-
B dataset alone, the results of applying LoRA2

only to the Q and K matrices are equally excellent.

However, for other tasks, applying LoRA2 to all
weight matrices yields the best results, with an av-
erage performance lead of over 1%. This is largely
consistent with the situation for LoRA. The results
suggest that applying LoRA2 to all weight matrices
can be a beneficial strategy.

7



5 Conclusion

We propose a multi-scale low-rank approximation
named LoRA2, an innovative approach for effi-
ciently fine-tuning large pretrained language mod-
els. Building on the basis of SVD, we train Lo-
RAs at multiple scales on mutually orthogonal
planes. By dynamically allocating parameter bud-
gets through pruning, LoRA2 adapts to various
downstream tasks. We change the importance score
algorithm to accommodate the structure of LoRA2.
It reduce the parameter sensitivity score calcula-
tions by approximately 98.5% without causing any
degradation in performance. We conduct exten-
sive experiments in the NLP domain, and LoRA2

achieves performance close to baselines with eight
times the number of parameters, demonstrating that
LoRA2 surpasses existing methods.

Limitations

Although LoRA2 has demonstrated surprising per-
formance on NLP datasets, our research still has
some acknowledged limitations. However, recent
studies have shown that methods for parameter-
efficient fine-tuning can also be applied in the cross-
modal domain, and the performance of LoRA2 in
the multimodal field is currently unknown. Addi-
tionally, our method only evaluates the fine-tuning
results of dual LoRA at multiple scales. For more
multi-scale LoRA, we intend to conduct experi-
ments to verify its performance.
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A Datasets

For evaluation, we adaopt the GLUE benchmark
(Wang et al., 2018), including CoLA (Warstadt
et al., 2019), SST-2 (Socher et al., 2013), MRPC
(Dolan and Brockett, 2005), QQP (Wang et al.,
2018), STS-B (Wang et al., 2018), MNLI (Williams
et al., 2018), QNLI (Rajpurkar et al., 2016) and
RTE (Dagan et al., 2006; Giampiccolo et al., 2007;
Bentivogli et al., 2011). We present the dataset
statistics of GLUE in the following table 5.

Dataset Metric #Train #Valid #Test #Label

CoLA Mcc 8.5k 1,043 1,063 2

SST-2 Acc 67k 872 1.8k 2

MRPC Acc 3.7k 408 1.7k 2

QQP Acc/F1 364k 40.4k 391k 2

STS-B Corr 5.7k 1.5k 1.4k 1

MNLI Acc(m/mm) 393k 20k 20k 3

QNLI Acc 105k 5.5k 5.5k 2

RTE Acc 2.5k 277 3k 2

Table 5: Dataset Sizes and Evaluation Metrics in the
GLUE Benchmark. "Mcc," "Acc," "F1," and "Corr" de-
note the Matthews correlation coefficient, accuracy, F1
score, and Pearson correlation coefficient, respectively.
"Acc(m/mm)" indicates accuracy results for matched
and mismatched datasets within MNLI.

B Sparse Regularization Theory

By using progressive projection matrices, we fur-
ther increase the compression ratio p of the param-
eters. Additionally, this enhances the stability of
the fine-tuning process. Equations 10(Fu et al.,
2023) theoretically demonstrate the role of sparsity
in model stability. As the compression ratio p de-
creases, the upper bound also decreases. Therefore,
a sparser model implies better stability.

ES,i∼U(n)[|ℓ(A(Si), zi)− ℓ(A(S), zi)|]

≤ 2ρ2

(Λmin + 2(1− p))n
, (10)

ES,i∼U(n)[·] is Pointwise Hypothesis Stability
(PHS)(Bindel et al., 2002) which focuses on an-
alyzing the change of model output after a training
sample is removed. Λmin = min{Λ1, . . . ,Λm}.
ℓ(·) represents the loss function. The variable ρ
represents this measure of stability, reflecting the
maximum impact of input variations on the output
in the loss function.

C Orthogonal Projection Theory

It is a fundamental concept in linear algebra with
applications across various fields including ma-
chine learning, statistics, and computer graphics
(Lay et al., 2016). This theory revolves around the
idea of projecting a vector onto a subspace in a
way that minimizes the distance between the vector
and the subspace, effectively finding the closest
approximation within that subspace.

Mathematically, consider a vector u in Rn and
a subspace V spanned by vectors {v1, v2, . . . , vk}.
The orthogonal projection of u onto V, denoted as
PV(u), is given by:

PV(u) =

k∑
i=1

u · vi

vi · vi
vi (11)

LoRA2 enhances the model’s learning and repre-
sentational capabilities by training two mutually
orthogonal LoRA blocks. This design allows each
LoRA block to capture information in different di-
mensions, thereby reducing information overlap
and increasing the overall efficiency and effective-
ness of the model. Additionally, the orthogonal
training strategy helps prevent overfitting, making
the model more robust when faced with new data.
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