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A B S T R A C T

Multi-view data has attracted extensive attention because it can better characterize samples, and multi-view 

semi-supervised feature selection can not only effectively improve multi-view performance, but also maintain 

the original real structure of the data. To this end, many scholars have proposed various models to achieve this 

goal. However, most of the existing methods rely on the graph structure constructed from the original data and 

use the constructed graph as a guide for feature selection. This not only ignores multi-order domain knowledge, 

but also ignores the high-order relations between views. Therefore, this study effectively integrates multi-order 

domain information with graph learning, and performs tensor low-rank learning on the graph structure between 

multiple views. A multi-view semi-supervised feature selection method based on multi-order similarity and tensor 

learning is proposed, which not only integrates multi-order domain information, but also takes into account the 

relationship between views. Based on this, we propose an iterative method to solve the objective function and 

prove the superiority of our method on multiple basic datasets.

1. Introduction

In real life, a multitude of data needs to be gathered from various 

heterogeneous aspects or sources. For example, an image can be de-

scribed from numerous views such as text and pixels. The surface of the 

planet can be represented by multiple heterogeneous aspects such as 

spectral data and spatial information [1,2]. With the development of ma-

chine learning, this type of data with multiple domain characteristics is 

defined as multi-view data [3]. Because it describes objects from differ-

ent aspects, it can represent objects more comprehensively semantically 

[4]. Nevertheless, the “curse of dimensionality” [5] will inevitably af-

fect multi-view data because of the presence of noisy and redundant 

features, which will impair the learning task performance. Therefore, 

how to better reduce dimensionality has become a hot topic of research.

An important strategy for reducing dimensionality is feature selec-

tion [6]. This method does not change the original features of the 

sample, it only obtains a subset of the original sample. As a result, it has 

strong interpretability in addition to being able to eliminate elements 

that are unnecessary and noisy. Numerous scholars have put forth nu-

merous feature selection models, and classified them into unsupervised

[7,8], semi-supervised [9,10], and supervised [11,12] categories based 

on the proportion of samples that include labels. Among these methods, 

the semi-supervised approach chooses feature subsets from the original 

features by utilizing the label information of a limited number of data 

samples. Because it can make up for the problem of overfitting or under-

fitting caused by using only a small number of labels, it can also make up 

for the problem that only unlabeled data may lose the real structure of 

the data. For that reason, multi-view semi-supervised feature selection 

is the main topic of this paper.

Many multi-view semi-supervised feature selection models have been 

suggested recently, and they may be broadly classified into two groups 

according to the way they utilize labeled samples. One of them is to 

extend the label propagation technique, which can reduce noisy features 

while maintaining critical information, and use a tiny bit of known label 

information to influence feature selection [13,14]. The other paradigm 

is to combine label information with the feature selection process, and 

select features that can better reflect label relationships by constructing 

a hybrid graph structure or joint optimization [15,16]. With the label 

propagation technology, the former may reduce noise and effectively 

use only a limited amount of labels for feature selection while capturing
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Fig. 1. This is the framework of MSFSMT
{

 we proposed,
}

 which mainly consists of three parts: multi-order similarity learning, tensor learning, and label information 

 

learning. Given a 

(1)multi-view  

 data 𝑋 = 𝑋 ,… , 𝑋  

 

(𝑉 )  

 and labeled data 𝑌 ,𝑙  we first perform multi-order similarity learning on the  

 

original data to obtain the initial 

fixed similarity graph  

 matrix for each view, and then obtain  

 the adaptive graph matrix 𝑆 

𝑣 by minimizing the difference, and stack 𝑆 

𝑣 into a third-order tensor S. At 

the same time, we investigate high-order linkages between views using tensor robust principal component analysis. Then, we integrate the adaptive graph matrices 

of multiple views into a spectral graph to learn a consensus indicator matrix 𝐹 , and finally fuse the existing label information into the indicator matrix.

the global structure of the data. By utilizing both the intrinsic structure 

of unlabeled data and the label information simultaneously, the latter 

can improve the accuracy and consistency of feature selection. But they 

are both graph-based, semi-supervised feature selection techniques use a 

similarity graph matrix to preserve the geometric structure among data 

points [17,18]. In this case, their performance depends largely on the 

quality of the graph structure. Especially for multi-view data, obtaining 

a consensus graph that better reflects the true structure of the data has 

become a decisive factor in multi-view semi-supervised feature selection.

According to the different ways that numerous views are processed, 

the multi-view semi-supervised feature selection techniques that are 

now in use can be broadly classified into two categories. One is to sim-

ply splice the views and then select features from the original data using 

the single-view method [19,20]. However, this method easily ignores 

the connection and differences between views and has poor effective-

ness and adaptability in multi-view applications. The other is to assign a 

weight to the similarity graph matrix of each view to obtain a fused con-

sensus graph, and then use the consensus graph to guide feature selection 

[21,22]. However, the existing methods are limited by the noise in the 

original data, and the obtained similarity graph matrix deviates from the 

real data structure, resulting in a decrease in the final performance.

In order to obtain a more reliable similarity graph structure, we 

propose a multi-view semi-supervised feature selection model with 

multi-order similarity and tensor learning (MSFSMT). First, we build 

each view’s initial similarity matrix using multi-order similarity learn-

ing as a graph filter. This technique guarantees that the neighborhood 

data of various orders is integrated into the learning graph. The various 

views’ graph structures are combined into a third-order tensor, and the 

tensor low-rank learning effectively reduces the effect of noise. Finally, 

multiple graph structures are integrated into a consensus indicator ma-

trix after spectral clustering. Furthermore, the indicator matrix is guided 

by a small quantity of label information and integrated into a unified 

learning framework model. Fig. 1 simply shows the process and frame-

work of our model. The following are the main contributions of this 

paper:

• By leveraging the neighborhood knowledge of multi-order to con-

-

struct a more dependable graph structure that will better support 

subsequent feature selection, the MSFSMT algorithm efficiently 

blends multi-order similarity learning with semi-supervised feature 

selection.

• The MSFSMT algorithm uses the tensor low-rank learning to improve

the robustness of the model, which can better utilize the high-order 

relationships between views to keep the consensus graph structure 

consistent as much as possible.

• We integrate multi-order similarity learning, tensor low-rank learn

ing, and semi-supervised learning into a unified framework and 

design an effective iterative update algorithm to solve the objective 

function.

• To prove the superiority of our suggested strategy, we do tests on

several datasets and compare the experimental findings.

This is how the remainder of the paper is structured. We provide a 

brief overview of the relevant semi-supervised feature selection work in 

Section 2. We provide the MSFSMT method’s formulation and details in 

Section 3. We present the MSFSAT optimization algorithms in Section 4. 

To illustrate the efficacy of the approach, we perform extensive exper-

iments on multiple benchmark datasets in Section 5. In Section 6, we 

provide a summary of the MSFSMT methodology.

2. Related work

In this section, we mainly introduce the main models of semi-

supervised feature selection.

2.1. Single-view semi-supervised feature selection

Most semi-supervised feature selection techniques were initially 

based on filtering techniques to select features by evaluating the rela-

tionship between features and the target variable. Zhao and Liu [23] 

proposed the semi-supervised feature selection via spectral analysis 

(SSFSSA) model, which addresses the problem of a small number of la-

beled samples and incorporates unlabeled samples into a regularized 

framework. Doquire and Verleysen [24] proposed a semi-supervised 

feature selection algorithm for regression problems, which primarily 

uses the Laplace score to evaluate the importance of features. A semi-

supervised feature selection algorithm based on the maximum relevance 

and minimum redundancy criterion of Pearson’s correlation coefficient 

(RRPC) was proposed [25], which selects features through incremental 

search technology. Although these methods can effectively utilize the 

information of the features themselves, they do not fully utilize the re-

lationship between the features. Later, the rise of embedded methods, 

which can be integrated with feature selection, has certain advantages 

over other methods, and scholars have also proposed many embedded 

semi-supervised feature selection methods. The semi-supervised feature 

selection via manifold regularization (SFSVMR) model was presented 

by Xu et al. [26]. It picks features by increasing the degree of classi-

fication between various categories. The semi-supervised approach of 

feature selection via sparse rescaled linear square regression (SRLSR) 

was introduced by Chen et al. [27]. This method selects features us-

ing the regression coefficients from least squares regression. The local 

preserving logistic I-Relief for semi-supervised feature selection (LPLIR) 

approach was proposed by Tang et al. [28]. It maintains the consistency 

of the local sample structure while simultaneously maximizing the la-

beled data boundary. Because these methods are greatly affected by 

outliers, the similarity matrix constructed based on k-nearest neighbors 

may be locally optimal. Zeng et al. [29] suggested a semi-supervised 

feature selection technique with a global sparsity constraint and a local 

adaptive loss function that considers the sparsity of both the local and
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global sample structures in order to reduce its impact. Zhong et al. [30] 

proposed an adaptive semi-supervised discriminative feature selection 

analysis (SADA), which can reduce the impact of noise on the similarity 

matrix by learning the adaptive similarity matrix and projection ma-

trix in an iterative process. In order to enhance the quality of feature 

selection, Lai et al. [31] presented adaptive graph learning for semi-

supervised feature selection with redundancy minimization (AGLRM), 

which combines adaptive graph learning and redundancy minimization 

regularization. Kang et al. [15] proposed the structured graph learning 

framework with single kernel (SGSK), which uses the self-expression 

of samples to obtain the global structure and adapts to the field to 

maintain the local structure. In order to make better use of label infor-

mation, Wang et al. [32] proposed sparse discriminative semi-supervised 

feature selection (SDSSFS), which iteratively combines learning regres-

sion coefficients and predicting unknown labels. Sheikhpour et al. [33] 

proposed a Hessian-based semi-supervised feature selection framework 

using the generalized uncorrelated constraint (HSFSGU), which uses 

topological structure and generalized uncorrelated constraints to make 

the projection matrix suitable for feature selection.

2.2. Multi-view semi-supervised feature selection

In recent years, multi-view data has become a hot topic of research 

due to its advantages. On the basis of single-view semi-supervised fea-

ture selection, multi-view semi-supervised feature selection has also 

been developed and innovated, and various useful models have been 

put forth. At the beginning, researchers simply spliced the features of 

multiple views together [34,35], but this method was just a simple mi-

gration of single-view semi-supervised feature selection, and did not 

consider the differences and complementarities between views. Later, 

Shi et al. [36] proposed a multi-view semi-supervised feature selection 

using the Laplace regularization method, which effectively utilized the 

connection between views. Shi et al. [21] proposed a multi-view Hessian 

semi-supervised sparse feature selection (MHSFS) model, which uses 

the Hessian regularization method to encode the local geometric struc-

ture of unlabeled samples to keep the local structure of data samples 

consistent. Nie et al. [37] proposed multi-view learning with adaptive 

neighbors (MLAN), which can be used in semi-supervised classification 

tasks. This method can adaptively weight each view. Although the per-

formance of these methods is higher than that of the corresponding 

single-view methods, they all construct similarity matrices through orig-

inal features and are easily affected by noise and redundancy in data. In 

addition, the similarity matrix remains unchanged during the iterative 

solution process, resulting in a certain deviation in the final solved pro-

jection matrix. In order to enable the Laplacian graph to adjust to the

prediction data throughout the iteration process, Shi et al. [38] intro-

duced self-paced learning into the multi-view adaptive semi-supervised 

feature selection (MASFS) approach. Ziraki et al. [13] proposed a multi-

view consistent graph construction and label propagation algorithm 

(MVCGL), which combines multi-view graph structure information and 

label information. However, these methods cannot handle large-scale 

data. Zhang et al. [39] proposed a multi-view semi-supervised feature 

selection for bipartite graphs based on adaptive learning, which greatly 

reduced the complexity of the calculation. In order to better explore the 

different structures between multiple views, Guo et al. [40] proposed 

a robust semi-supervised multi-view graph learning framework based 

on the shared and individual structure (RSSMvSI). This model obtains 

clean data by sparsely denoising the original data, thereby improving 

the robustness of feature selection.

There are always opportunities for improvement even though ear-

lier approaches have had some successes with the multi-view semi-

supervised feature selection. To be more precise, they all create the 

graph structure from raw data without utilizing multi-order neigh-

bor information, which leads to a less-than-ideal network structure. 

As a result, we investigate how multi-view semi-supervised feature se-

lection incorporates multi-order similarity learning. Furthermore, the

aforementioned techniques all immediately acquire a consensus graph 

structure from every view, which gives scant consideration to the diver-

sity and consistency of information across views. Therefore, we study 

how to make up for this defect through the tensor learning.

3. Proposed method 

3.1. Notations and definitions

To introduce the proposed model more clearly, we first provide a 

brief explanation of the symbols and definitions in this paper. We use
𝑣

bold capital letters to represent a matrix, for example, 𝑋 

𝑣 ∈  

 

 R 

𝑛×𝑑

represents  

×the data matrix of the 𝑣 th  

 view, 𝑆  

  

𝑣 ∈ R 

𝑛 𝑛 represents the sim

ilarity matrix 

×of  

 the 𝑣 th view, 𝐹 ∈ R 

𝑛 𝑘 represents the indicator matrix, 

𝑊 

𝑣 ∈ R 

𝑑 

𝑣 ×𝑘 represents the ∈ ×projection matrix of the 𝑣 th view, 𝑌  R 

𝑙 𝑘
𝑙 

represents the label matrix of the labeled samples, and 𝑌 = [𝑌 𝑙 

; 0] ∈ R 

𝑛×𝑘 

represents the label matrix. ‖𝑋‖𝐹       

 

, ‖𝑋‖2,1 

denote the Frobenius norm

and 𝑙2 -norm of , respectively. We also use uppercase,1   𝑋        

 

calligraphic let

ters to denote third-order tensors, for example, S ∈ R 

𝑛 1 

×𝑛2  

×𝑛 3 denotes 

a third-order tensor consisting of the similarity matrices of 𝑉 views. In

addition, we use ‖S‖⊛  

 

to denote the t-SVD based tensor nuclear norm

of S [

-

-

41,42].

3.2. Framework of MSFSMT

In this paper, in order to allow the graph structure guiding feature se-

lection to incorporate more multi-order neighbor information, we need 

to make the similarity matrix 𝑆 as close as possible to the neighbor-

hood information 𝑓 (𝐴) of different orders, which can be defined by 

mathematical formula.

min
𝑆

‖𝑆 − 𝑓 (𝐴)‖2𝐹 (1)

where 𝑓 (𝐴) contains 𝑝 different orders of domain information of 

𝐴, 𝐴 

2 ,…𝐴 

𝑝 , and its mathematical formula [43,44] is defined as

𝑓 (𝐴) = 𝐴 + 𝐴 

2 + ⋯ + 𝐴 

𝑝. (2)

Among them, 𝐴 describes the first-order domain information, that 

is, the probability of a node reaching another node through one step 

of random walk. For example, 𝐴 represents probability𝑖𝑗  the   

 

of node 𝑥 𝑖 

transitioning to 𝑥  

 

through one step. proba𝑗
 

 Similarly, 𝐴 

𝑝 represents the 

bility of a node reaching another node through 𝑝 steps of random walk, 

that  

 is, 𝐴 

𝑃 = 𝐴 ⋅ 𝐴 ⋯𝐴. However, because 𝑓 (𝐴) simply adds domain
⏟--⏟--

 

⏟
       

 

𝑃

-

information of different orders, its value may have different degrees of 

amplitude deviation, so we restrict its projection to [0, 1] and set the 

value of the diagonal elements to 0, and extend formula 1 to multiple 

views and obtain

min
𝑆 

𝑣

𝑉
∑

𝑣=1
‖𝑆 

𝑣 − 𝑓 (𝐴 

𝑣 )‖2𝐹

s.t. (𝑆 

𝑣 ) 

⊤ 𝟏 = 𝟏, 0 ≤ 𝑆 

𝑣 ≤ 1.

(3)

In order to obtain high-order correlations between views, we stack 

the obtained similarity matrix 𝑆 

𝑣 into a third-order tensor S and use t-

SVD to ensure the low rank of S [45]. The formula (3) can be expanded 

to

min
𝑆

𝑉
∑

𝑣=1
‖𝑆 

𝑣 − 𝑓 (𝐴 

𝑣 )‖2𝐹 + ‖S‖ ⊛

s.t. (𝑆 

𝑣 ) 

⊤ 𝟏 = 𝟏, 0 ≤ 𝑆 

𝑣 ≤ 1.

(4)

In addition, we reasonably assume that the cluster labels correspond-

ing to each view have relatively large similarities, so we use a common 

indicator matrix to utilize the consensus information between views. 

According to spectral graph theory, the higher the similarity of two sam-

ples in the similarity graph matrix, the greater the probability that they
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have the same label [46]. Next, we may include a regularization term to 

ensure that the local graph structure of every view remains consistent.

min
𝐹

𝑣
∑

𝑣=1
Tr(𝐹 

⊤ 𝐿 

𝑣 𝐹 )

s.t. 𝐹 ≥ 0, 𝐹 

⊤ 𝐹 = 𝐼,

(5)

𝑆𝑣 +(𝑆𝑣 )⊤
 −   𝐿𝑣

 = 𝐷 

𝑣  

 , 𝐷 

𝑣 

2where is the degree matrix of  𝑆 

𝑣 , and its diagonal
∑

elements are 

𝑛defined as  

  𝐷𝑣
𝑖𝑖 

= 𝑗=1 𝑆 

𝑣 .𝑖𝑗 

The samples that were labeled in the indicator matrix need to match

the true labels in order to fully utilize the labeled data. This will yield

the following penalty terms.

min
𝐹

𝑙
∑

𝑖=1

[ 𝑘
∑

𝑗=1
𝑈 𝑖𝑖

(

𝐹𝑖𝑗 

− 𝑌 𝑖𝑗
) 2
] 

(6) 

Among them, 𝑈 is the decision rule matrix, which is a diagonal ma-

trix. For unlabeled samples 𝑥 𝑖 

, the diagonal elements of the decision rule 

matrix 𝑈 𝑖𝑖 = 1; if the sample is labeled, 𝑈 𝑖𝑖 

is a large value to ensure that

the predicted label is consistent with the true label. For convenience,

the above formula can be converted to

min
𝐹

Tr((𝐹 − 𝑌 ) 

𝑇 𝑈 (𝐹 − 𝑌 )) (7)

Finally, the projection matrix between the eigenvalue and the indi-

cator matrix can be used as the discriminant matrix for feature selection 

[47]. The definition is as follows.

min 

𝑊

𝑉
∑ 

𝑣=1
(‖𝑋 

𝑣 𝑊 

𝑣 − 𝐹 ‖ 

2
𝐹 + 𝛼 ‖𝑊 

𝑣 

‖ 2,1 

) (8)

We apply the 𝑙2 ,1-norm to the projection matrix 𝑊 

𝑣 . When 𝛼 is large

enough, most of the values in the projection matrix are almost zero, 

that is, only a small number of values are retained, thereby increasing 

the difference between features and making the feature subset selected 

by the feature more representative.

Combining with the formulas (4), (5), (7) and (8), we can derive the

overall objective function of MSFSMT.

min
𝑊 

𝑣 ,𝑆 

𝑣 ,𝐹

𝑣
∑

𝑣=1
(‖𝑋 

𝑣 𝑊 

𝑣 − 𝐹‖

2
𝐹 + 𝛼 ‖𝑊 

𝑣 

‖ 2,1 

+ 𝛽 ‖𝑆 

𝑣 − 𝑓 (𝐴 

𝑣 )‖ 

2
𝐹

+ 𝛾 Tr(𝐹 

⊤ 𝐿 

𝑣 𝐹 )) + 𝜆‖S‖ ⊛ + Tr((𝐹 − 𝑌 ) 

⊤ 𝑈 (𝐹 − 𝑌 )) 

s.t. 𝑆 

𝑣⊤ 𝟏 = 𝟏, 0 ≤ 𝑆 

𝑣 ≤ 1, 𝐹 ≥ 0, 𝐹 

⊤ 𝐹 = 𝐼,

(9)

Among them, 𝛼, 𝛽, 𝜆, and 𝛾 are balanced hyperparameters for balancing 

various constraints.

From the formula (9), we can see three advantages of the MSFSMT 

model: First, unlike other methods that guide the similarity matrix by 

constructing a Laplacian graph or a self-representing graph, it constructs 

a multi-order graph matrix with multi-order domain information, and 

then lets the similarity matrix approximate, which can better capture 

the global structural information related to the graph. Second, using 

tensor low-rank constraints can better utilize high-order connections be-

tween views and increase the robustness of the model. Third, a consensus 

similarity graph matrix is obtained in all views by employing the com-

plementary information and consistency information between various 

views.

4. Optimization algorithm 

In this section, we design an efficient iterative optimization method

to find the optimal solution. As can be seen from formula (9), the ob-

jective function involves three variables: 𝐹 , 𝑊 

𝑣 , and 𝑆 

𝑣 . It is quite

challenging to solve these variables at the same time. To deal with 

this problem, we decompose the objective function into multiple sub-

problems. When optimizing one of the variables, the other variables 

remain unchanged and are optimized alternately.

4.1. Update 𝑊 

𝑣

In formula (9), 𝑊 

𝑣 for each view can be solved separately, and other 

variables are fixed to obtain the optimization subproblem.

min
𝑊 

𝑣
‖𝑋 

𝑣 𝑊 

𝑣 − 𝐹 ‖

2
𝐹 + 𝛽 ‖𝑊 

𝑣 

‖ 2,1 
(10)

We can transform the above formula (10) into a differentiable

formula.

min
𝑊 

𝑣
Tr((𝑋 

𝑣 𝑊 

𝑣 − 𝐹 ) 

⊤(𝑋 

𝑣 𝑊 

𝑣 − 𝐹 )) + 𝛼 Tr(𝑊 

𝑣⊤ 𝐺 

𝑣 𝑊 

𝑣 ) (11) 

where 𝐺 

𝑣 is a diagonal matrix, and its diagonal elements are: 𝐺 

𝑣 =𝑖𝑖
1 ,

2‖𝑊 

𝑣 (𝑖,∶)‖2 
 then calculate the derivative of the formula (11) with respect

to 𝑊 

𝑣 and let its value equal to zero, we can get the following update

rule.

𝑊 

𝑣 = 

( 

𝑋 

𝑣⊤ 𝑋 

𝑣 + 𝛼𝐺 

𝑣 

) −1 

𝑋 

𝑣⊤ 𝐹 . (12)

4.2. Update 𝐹

When other variables are fixed, the update to formula (9) becomes

min
𝐹

𝑣
∑

𝑣=1
(‖𝑋𝑣 𝑊 

𝑣 − 𝐹 ‖

2
𝐹 + 𝛾 Tr(𝐹 

⊤ 𝐿 

𝑣 𝐹 )) 

+ Tr((𝐹 − 𝑌 ) 

⊤𝑈 (𝐹 − 𝑌 )) 

s.t. 𝐹 ≥ 0, 𝐹 

⊤ 𝐹 = 𝐼. 

(13)

There are multiple constraints on 𝐹 , and we can use the Lagrange

multiplier method to solve the update rule for 𝐹 [48]. The Lagrange

function of the above formula (13) is

min
𝐹

𝑣
∑

𝑣=1
(Tr((𝑋 

𝑣 𝑊 

𝑣 − 𝐹 ) 

⊤ (𝑋 

𝑣 𝑊 

𝑣 − 𝐹 )) + 𝛾 Tr(𝐹 

⊤ 𝐿 

𝑣 𝐹 )) 

+ Tr((𝐹 − 𝑌 ) 

⊤𝑈 (𝐹 − 𝑌 )) + 

𝜂 

2 

(𝐹 

⊤ 𝐹 − 𝐼) + Tr(Γ𝐹 

⊤ )

(14)

where 𝜂 is the Lagrange multiplier of the orthogonal constraint. The 

larger the value, the more 𝐹 can maintain orthogonality, that is, 𝐹 

⊤ 𝐹 = 

𝐼 . In addition, Γ is the Lagrange multiplier of the constraint 𝐹 ≥ 0. By 

deriving the formula (14), when 𝐹𝑖𝑗 is equal to zero, according  

 

to the 

Karush–Kuhn–Tucker (KKT) condition, we can get Γ 

 

𝐹 we 

 

= 0, so can𝑖𝑗 𝑖𝑗  

get the update rule for 𝐹𝑖𝑗 . 

𝐹 𝑖𝑗 

⟵ 𝐹 𝑖𝑗

( 

∑𝑉
𝑣=1 𝑋 

𝑣 𝑊 

𝑣 + 𝜂𝐹 + 𝑈𝑌 ) 𝑖𝑗

(𝑉 𝐹 + 𝛾 

∑ 𝑉
𝑣=1 𝐿 

𝑣 𝐹 + 𝜂𝐹 𝐹 

⊤ 𝐹 + 𝑈𝐹 ) 𝑖𝑗

. (15)

4.3. Update 𝑆 

𝑣

By fixing the 𝐹 and 𝑊 

𝑣 variables, we can derive the update formula 

for 𝑆 

𝑣.

min
𝑆 

𝑣

𝑉
∑

𝑣=1
(‖𝑆 

𝑣 − 𝑓 (𝐴 

𝑣)‖2𝐹 + 𝛾 Tr(𝐹 

⊤ 𝐿 

𝑣 𝐹 )) + 𝜆‖S‖ ⊛ 

s.t. (𝑆 

𝑣 ) 

⊤𝟏 = 𝟏, 0 ≤ 𝑆 

𝑣 ≤ 1. 

(16)

In order to make the above formula separable, we introduce a new 

tensor J , and we obtain

min
𝑆 

𝑣

𝑉
∑

𝑣=1
(‖𝑆 

𝑣 − 𝑓 (𝐴 

𝑣 )‖2𝐹 + 𝛾 Tr(𝐹 

⊤ 𝐿 

𝑣 𝐹 )) + 𝜆‖J ‖ ⊛

+
𝜇
2
‖S − J + 

M 

𝜇 

‖

2
𝐹

s.t. (𝑆 

𝑣 ) 

⊤𝟏 = 𝟏, 0 ≤ 𝑆 

𝑣 ≤ 1.

(17)
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When the variable J is fixed, the update of 𝑆 

𝑣 for each view is 

consistent, and its formula can be written as

min
𝑆 

𝑣
‖𝑆 

𝑣 − 𝑓 (𝐴 

𝑣 )‖2𝐹 + 𝛾 Tr(𝐹 

⊤ 𝐿 

𝑣 𝐹 ) + 

𝜇
2
‖𝑆 

𝑣 − 𝐽 

𝑣 + 𝑀 

𝑣

𝜇
‖

2
𝐹

s.t. (𝑆 

𝑣 ) 

⊤𝟏 = 𝟏, 0 ≤ 𝑆 

𝑣 ≤ 1.
(18)

For a more convenient and clear expression, we introduce
∑

      

1, and because Tr(𝐹⊤ 

 𝐿𝑣
 𝐹 ) = 

𝑛
‖ ‖

𝑣 , we can rewrite the𝑖,𝑗=1 f2 𝑖 − f 𝑗   

 

𝑆𝑖𝑗   

above formula as follows.

  𝐵𝑣 = 𝐽 𝑣 −
𝑀 

𝑣

𝜇

min
𝑆 

𝑣
𝑖
⊤𝟏=𝟏,0≤𝑆𝑣

𝑖𝑗≤1

𝑛
∑

𝑖,𝑗=1

(

𝛽(𝑆𝑣
𝑖𝑗 − 𝑓 (𝐴 

𝑣) 𝑖𝑗 ) 

2 + 

𝜇
2
(𝑆𝑣

𝑖𝑗 − 𝐵 

𝑣
𝑖𝑗 ) 

2 + 

𝛾
2
‖f 𝑖 

− f 𝑗 

‖

2
2𝑆 

𝑣
𝑖𝑗

)

(19) 

𝑖 − 2Let v𝑖𝑗 = ‖f  f ‖ ,𝑗  2  and let v𝑖 represent the 𝑗 th element in the 𝑖 th

row. Then, it is comparable to maximizing the following minimization 

problem in order to find the optimal 𝑆 

𝑣.

min
𝑆 

𝑣
𝑖
⊤𝟏=𝟏,0≤𝑆𝑣

𝑖𝑗≤1
‖𝑆𝑣

𝑖 −
2𝛽𝑓 (𝐴 

𝑣) 𝑖 + 𝜇𝐵𝑣
𝑖 − 

𝛾
2v 𝑖

2𝛽 + 

𝜇
4

‖

2
2 (20)

We can solve the optimal 𝑆 

𝑣 value according to the method pro-

posed by Huang et al. [49]. For the variable J , which we introduced 

additionally, we also need to iteratively update it, and we can get

min
J

‖J ‖ ⊛ + 

𝜇
2
‖S − J + 

M
𝜇

‖

2
𝐹 (21)

According to the t-SVD tensor nuclear norm minimization theory 

[50], it can be solved by the following method.

J 

∗ = U ∗ C ∗ V 

⊤ , (22)

MS + = U ∗ O ∗ V 

⊤ , C = O ∗ D. D𝜇   where represents a tensor

composed of diagonal matrices, whose diagonal items are defined as 

( ) 

D( ∕𝑖,  𝑗) = 1 − 𝑛 𝜇
 𝑖,  . O(𝑖,𝑖,𝑗) + 

Combining the above update rules  for each

variable, we summarize the basic algorithm flow of MSFSMT, as shown 

in Algorithm 1.

4.4. Complexity and convergence analysis

An analysis of the complexity of various proposed approaches may 

be conducted by approximately dividing the optimization process of 

the MSFSMT algorithm into four stages. The first part is the update 

3of 𝑊  

 

𝑣 , and its cost for each view is 𝑂1 = 𝑂(𝑑 

𝑣 ).  

 

The second part

is the updating of 𝐹 . Since it updates every element in the matrix,

Algorithm 1 MSFSMT.

1:  

 

1Input: Muti-view data: 𝑋=[𝑋  ,… , 𝑋 

𝑣], labeled matrix 𝑌 , regular

ization parameters 𝛼, 𝛽, 𝜆, 𝛾, initialize diagonal matrix 𝑈 and matrix 

𝑊 

𝑣 , where 𝑈 is a diagonal matrix defined as 𝑈 𝑖𝑖 

= 9 for 𝑖 = 1, 2, … , 𝑙 

and =  

 𝑈  1 otherwise. The elements 𝑊 in 𝑊 

𝑣 are mbers𝑖𝑖  random nu𝑖𝑗  

between 0 and 1. 𝜌 = 1.1 −5, 𝜇 = 10  

 , 𝜇 𝑚𝑎𝑥 

= 10 

5.

2: Repeat

3: Update  

 𝑊 

𝑣 by Eq. (12). 

4: Update 𝐹 by Eq. (15). 

5: Update 𝑆 

𝑣 by Eq. (20). 

6: Update J by Eq. (22). 

7: Update M by M = M + 𝜇(S − J ). 
8: Update 𝜇 by min(𝜌𝜇, 𝜇 𝑚𝑎𝑥 

). 

9: Until Convergence 

10: Output: Calculate ‖ ‖

‖

𝑊𝑖‖
 

 2 (𝑖 = 1, 2, … , 𝑑) and sort its  

 

values. Take the

largest ℎ as the discriminant matrix, and the corresponding original 

dataset is the final feature subset.

-

2its complexity is 𝑂2 = 𝑂(𝑘𝑛𝑐 + 𝑐𝑛  

 ). Furthermore, updating 𝑆 

𝑣 and 

the tensor J has computational complexity 𝑂3 = 𝑂(𝑛2 

 ) and 𝑂4 = 

𝑂(2 𝑉 

2 +2 𝑛  

 

2 𝑉 𝑙𝑜𝑔(𝑛)), respectively. Consequently, 𝑂 = 𝑂1  

+𝑂2  

+𝑂3  

+𝑂 4 

is 

the computational complexity of one iteration of the MSFSMT algorithm. 

This algorithm employs an alternating optimization framework where 

each sub-problem is solved optimally, typically yielding a closed-form 

solution. This guarantees that the objective function value decreases 

monotonically with each iteration until convergence.

5. Experiment

In this section, we designed a series of experiments on multiple base 

datasets to demonstrate the superiority and effectiveness of the MSFSMT 

algorithm. All experiments can be roughly divided into two parts, one 

is to compare the MSFSMT algorithm with other representative feature 

selection models, and the other is to evaluate the MSFSMT algorithm 

from different aspects.

5.1. Dataset and experimental settings

To evaluate the outstanding MSFSMT models, we used 6 benchmark 

multi-view datasets, including MSRCV1, 3Sources, Handwritten (HW), 

Caltech101-7 (Cal-7), WebKB, and ORL. Table 1 briefly introduces the 

basic information of these datasets, including the feature size, number 

of samples, and number of categories of each view.

Next, we will further introduce the experimental settings. We ran-

domly select 70 % of the samples from each dataset as the training set 

and the remaining 30 % as the validation set. Because it belongs to semi-

supervised learning, the training set needs to be divided. We set 10 %, 

20 %, and 30 % as the labeled ratio and randomly divide the training set 

into labeled sample sets and unlabeled sample sets. The MSFSMT model 

has multiple hyperparameters, among which the step size of the random 

walk is set in {2, 3, 4, 5, 6, 7, 8, 9}, that is, the value of 𝑝 is set in {2, 3, 4, 

5, 6, 7, 8, 9}. For other parameters 𝛼, 𝛽, 𝜆, 𝛾, they are all set in {0.01, 0.1, 

1, 10, 100}. In addition to the setting of hyperparameters, the feature 

subset size also needs to be set. We set the feature subset size to a fixed 

value of {50, 100, …, 500}. The best linear SVM classifier for the feature 

subset is chosen using five-fold cross validation on the labeled samples. 

It is then tested on the validation set, and the accuracy is recorded. We 

perform the above experiment for five times, recording only the best ac-

curacy for each time, to minimize the contingency induced by random 

sample selection.

5.2. Comparison methods

We compared the MSFSMT algorithm with seven feature selec-

tion techniques, comprising two multi-view unsupervised feature se-

lection techniques, two single-view semi-supervised feature selection 

techniques, and four multi-view semi-supervised feature selection tech-

niques, in order to show the algorithm’s superiority and progress. The 

particular techniques are as follows.

• TRCA-CGL: This technique combines adaptive learning with ten-

sor resilient principal component analysis to produce a trustworthy 

pseudo-label that directs feature selection [51].

• CFSMO: The model applies multi-order similarity learning to learn

the graph structure of each view and maintains the complementary 

information of multiple views through a consensus latent represen-

tation [52].

• SFSS: It is a single-view semi-supervised feature selection model

using sparse regression and manifold regularization [35].

• SFS-SLL: A single-view semi-supervised feature selection model that

effectively combines soft label learning and sparse regression feature 

selection methods [53].

• MLSFS: A multi-view semi-supervised feature selection method us-

ing multi-view Laplacian regularization unifies the graph structure 

information of multiple views into a consensus indicator matrix [36].
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Table 1 

Details of the multi-view dataset.

Feature MSRCV1 3Sources HW Cal-7 WebKB ORL

1 CMT(24) BBC(3560) FCCS(76) WM(40) View 1(1703) GIST(512)

2 HOG(576) REUTERS(3631) FAC(216) CENTRIST(254) View 2(230) LBP(59)

3 GIST(512) GUARDIAN(3068) KAR(64) HOG(1984) View 3(230) HOG(864)

4 CENTRIST(254) – PA(240) GIST(512) – CENTRIST(254)

5 LBP(256) – ZER(47) LBP(256) – –

6 – – MOR(6) GABOR(48) – –

Instance 210 169 2000 1474 203 400

Class 7 6 10 7 4 40

Table 2 

Comparison of the classification results from several datasets using feature selection strategies (%). The best-performing row is bolded.

Datasets labeled ratios TRCA-CGL CCSFS SFSS SFS-SLL MLSFS MASFS SMFS EMSFS MSFSAT

3Sources 10 % 62.97 ± 3.78 64.58 ± 4.04 60.57 ± 5.86 64.75 ± 4.62 66.75 ± 3.87 61.78 ± 3.92 63.82 ± 3.59 68.62 ± 3.91 75.43 ± 2.11

20 % 63.37 ± 5.25 68.51 ± 3.47 71.23 ± 3.27 65.62 ± 3.01 73.59 ± 2.88 71.67 ± 2.56 80.39 ± 1.96

30 % 65.72 ± 2.91 72.52 ± 3.95 75.92 ± 2.24 70.51 ± 2.04 77.73 ± 2.66 78.43 ± 2.97 84.31 ± 2.24

HW 10 % 95.06 ± 0.18 95.11 ± 0.24 90.54 ± 0.42 95.67 ± 0.32 95.74 ± 0.26 94.17 ± 0.49 95.12 ± 0.52 93.49 ± 0.50 96.51 ± 0.26

20 % 94.62 ± 0.52 97.27 ± 0.06 96.53 ± 0.13 96.02 ± 0.31 96.41 ± 0.36 96.83 ± 0.17 96.23 ± 0.43

30 % 95.26 ± 0.21 97.67 ± 0.12 97.33 ± 0.21 96.83 ± 0.38 97.51 ± 0.29 97.23 ± 0.27 97.13 ± 0.20

Cal-7 10 % 92.43 ± 1.21 93.66 ± 2.06 89.59 ± 2.52 92.35 ± 2.07 93.79 ± 1.15 88.21 ± 1.18 92.71 ± 2.92 95.25 ± 1.81 97.51 ± 0.45

20 % 92.96 ± 0.49 96.21 ± 0.86 96.72 ± 0.34 89.69 ± 1.61 95.84 ± 0.32 95.71 ± 1.35 98.29 ± 0.13

30 % 96.32 ± 0.28 97.25 ± 0.36 97.92 ± 0.28 88.46 ± 1.83 97.62 ± 0.13 97.07 ± 0.90 98.79 ± 0.18

MSRCV1 10 % 77.46 ± 1.33 77.14 ± 1.42 54.60 ± 4.84 64.76 ± 7.81 61.90 ± 6.05 59.05 ± 9.76 80.32 ± 2.88 79.36 ± 2.13 90.16 ± 1.80

20 % 75.23 ± 5.85 80.01 ± 5.23 79.04 ± 4.14 67.94 ± 4.94 84.44 ± 3.68 82.53 ± 1.58 92.38 ± 1.31

30 % 85.40 ± 3.29 92.06 ± 1.12 86.67 ± 3.29 77.78 ± 3.58 86.98 ± 2.61 85.71 ± 1.87 91.75 ± 1.86

ORL 10 % 42.50 ± 3.83 45.16 ± 3.24 49.50 ± 3.07 38.63 ± 6.78 45.33 ± 4.73 48.67 ± 3.67 50.85 ± 3.78 53.98 ± 0.65 60.33 ± 1.12

20 % 68.72 ± 3.26 61.18 ± 4.69 70.26 ± 3.13 69.28 ± 2.51 71.67 ± 3.95 68.79 ± 0.46 80.73 ± 0.90

30 % 76.21 ± 1.58 72.36 ± 5.17 81.52 ± 2.13 82.89 ± 2.73 84.29 ± 1.86 82.14 ± 0.58 85.67 ± 0.64

WebKB 10 % 80.66 ± 1.37 77.04 ± 2.07 75.08 ± 2.93 83.93 ± 1.76 87.21 ± 2.14 86.56 ± 2.75 81.72 ± 3.28 85.12 ± 1.76 92.79 ± 1.87

20 % 80.23 ± 2.26 86.85 ± 0.92 89.26 ± 1.54 87.13 ± 1.85 81.98 ± 2.95 88.96 ± 0.44 93.11 ± 1.37

30 % 81.83 ± 1.92 85.97 ± 1.26 91.34 ± 0.97 84.25 ± 2.53 82.63 ± 2.79 93.19 ± 0.25 94.09 ± 0.83

• MASFS: This method is an extension of MLSFS. It adds an adaptive

step size to MLSFS so that the graph structure can also be updated 

during the iteration process [38].

• SMFS: This method unifies the feature learning and graph learning

and can adaptively weight the projection matrix [54].

• EMSFS: The model integrates graph learning, label propagation and

multi-view feature selection into a unified framework, adaptively 

constructs a bipartite graph between training samples and anchor 

points, and significantly reduces the computational complexity [39].

These comparison methods also have hyperparameters. In order to 

control the variables, we set these hyperparameters to {0.01, 0.1, 1, 10, 

100}. The settings of the feature subset size, classification method, and 

verification method are also consistent with the above paragraph. The 

unsupervised feature selection method does not use labeled information. 

The results of this method are consistent under different label ratios, so 

we only record the results once.

5.3. Comparative analysis of accuracy

We use accuracy as the evaluation indicator, and its value ranges 

from 0 to 100. The higher the accuracy value, the better the classification 

effect of the model. Table 2 shows the experimental results of all models, 

with the best results marked in bold. At the same time, Fig. 2 shows the 

highest classification accuracy of each method under different numbers 

of features, that is, when different numbers of features are selected, the 

hyperparameters of the optimal model are different, and we select the 

highest accuracy for recording. Through the experimental results, we 

can draw the following conclusions.

(1) In most experiments, the MSFSMT method outperforms the com-

parison methods. For example, in the 3Sources dataset with 10 % 

labeled samples, the accuracy is nearly 10 % higher than the

second-best method, and it is 7 % higher in the 30 % labeled 

sample set. Although our method does not perform best on the 

HW dataset with 20 % and 30 % labeled samples, it still achieves 

the highest accuracy for the 10 % labeled sample set, with a 1 % 

improvement based on the original baseline.

(2) The classification accuracy of the MSFSMT method essentially in-

creases with the increase in the proportion of the number of labels. 

For example, in the ORL dataset, the accuracy of the 20 % labeled 

sample set is 20 % higher than that of the 10 % labeled sample 

set, and the accuracy of the 30 % labeled sample set is 5 % higher 

than that of the 20 % labeled sample set, which proves that the 

MSFSMT method can effectively utilize labeled samples.

(3) The accuracy of 10 % labeled samples is improved by the SFSMT

approach more than that of 20 % and 30 % labeled samples in 

most datasets. In the Cal-7 dataset, for instance, the accuracy of 

the 10 % labeled sample set is 5 % greater than the second best; 

nevertheless, the 20 % and 30 % labeled sample sets have 3 % 

and 1 % higher accuracy, respectively, than the second best, re-

spectively. This proves that the MSFSMT method performs better 

when there are fewer labels, which further proves that our pro-

posed method can make full use of the structural information of 

unlabeled data.

(4) Selecting different numbers of feature subsets will have a certain

impact on the final accuracy, and the more features selected does 

not necessarily mean higher accuracy. For example, in the Cal-7 

dataset with 10 % labeled samples, the accuracy fluctuates as the 

number of features increases. In the 3Sources dataset with 20 % 

labeled samples, the accuracy first increases and then decreases 

as the number of features increases. The MSFSMT method per-

forms best under almost all different numbers of feature subsets, 

and the fluctuation range is smaller than that of other methods, 

which proves that the features selected by this method are more 

representative and have stronger noise resistance.
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Fig. 2. The accuracy of all models at different numbers of features.
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Fig. 3. Experimental results of parameter sensitivity on the datasets MSRCV1 and 3Sources. (The first two rows (experiments (a)–(l)) are the experimental results of 

MSRCV1, and the last two rows (experiments (o)–(x)) are the experimental results of 3Sources).

Fig. 4. Convergence curves of the MSFSMT algorithm on HW, MSRACV1, and Cal-7 datasets with different label ratios.
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5.4. Impact of parameter sensitivity

In this subsection, we use the grid search method to explore the im-

pact of the balance parameters 𝛼, 𝛽, 𝜆, 𝛾 in the MSFSMT model on the 

classification accuracy. We fix two of them and set their values to 1, set 

the other two parameters in {0.01, 0.1, 1, 10, 100}, and set the random 

walk step size 𝑝 to 6. The feature subset size is still a fixed value of {50, 

100, …, 500}, and we record the highest accuracy under different num-

bers of features. The experimental results of the MSRCV1 and 3Sources 

datasets are shown in Fig. 3. It is not difficult to find that the hyper-

parameters will have a certain degree of fluctuation in the accuracy, 

but remain roughly stable. For different situations, the optimal param-

eters are often different, so the grid search method is also needed when 

selecting hyperparameters.

5.5. Convergence analysis

In this subsection, we verify the convergence of the MSFSMT method 

through experiments. Fig. 4 shows the figure of the objective function 

value as the number of iterations changes. From the figure, we can see 

that the MSFSMT method has good convergence under different label 

ratios and in different datasets, and the convergence speed is very fast, 

which proves the effectiveness of the iterative method we proposed.

5.6. Ablation experiment

In order to further verify the effectiveness of each component, we 

conducted an ablation study on the proposed model. MSFSMT can be 

roughly divided into three parts: the basic model of multi-view semi-

supervised feature selection, multi-order similarity graph, and tensor 

low-rank learning. We denote the basic model of semi-supervised feature 

selection as MSFS, the basic model of multi-view semi-supervised feature 

selection plus the model of multi-order similarity graph as MSFSM, and 

finally add tensor low-rank learning to the MSFSM model to obtain the 

MSFSMT model proposed in this paper. Because tensor low rank learn-

ing is based on multi-order similarity graphs, it is impossible to give a 

model of the basic model of multi-view semi-supervised feature selec-

tion plus tensor low-rank learning. Below we give the formulas of each 

ablation model.

• MSFS:

min
𝑊 

𝑣 ,𝐹

𝑣
∑ 

𝑣=1
(‖𝑋 

𝑣 𝑊 

𝑣 − 𝐹‖

2
𝐹 + 𝛼 ‖𝑊 

𝑣 

‖ 2,1) + Tr((𝐹 − 𝑌 ) 

⊤ 𝑈 (𝐹 − 𝑌 ))

s.t. 𝐹 ≥ 0, 𝐹 

⊤ 𝐹 = 𝐼,

(23)

• MSFSM:

min
𝑊 

𝑣 ,𝑆 

𝑣 ,𝐹

𝑣
∑

𝑣=1
(‖𝑋 

𝑣 𝑊 

𝑣 − 𝐹‖

2
𝐹 + 𝛼 ‖𝑊 

𝑣 

‖ 2,1 

+ 𝛽 ‖𝑆 

𝑣 − 𝑓 (𝐴 

𝑣 )‖2𝐹

+ 𝛾 Tr(𝐹 

⊤ 𝐿 

𝑣 𝐹 )) + Tr((𝐹 − 𝑌 ) 

⊤𝑈 (𝐹 − 𝑌 )) 

s.t. 𝑆 

𝑣⊤ 𝟏 = 𝟏, 0 ≤ 𝑆 

𝑣 ≤ 1, 𝐹 ≥ 0, 𝐹 

⊤ 𝐹 = 𝐼,

(24)

• MSFSMT:

min
𝑊 

𝑣 ,𝑆 

𝑣 ,𝐹

𝑣
∑

𝑣=1
(‖𝑋 

𝑣 𝑊 

𝑣 − 𝐹‖

2
𝐹 + 𝛼 ‖𝑊 

𝑣 

‖ 2,1 + 𝛽 ‖𝑆 

𝑣 − 𝑓 (𝐴 

𝑣 )‖2𝐹

+ 𝛾 Tr(𝐹 

⊤ 𝐿 

𝑣 𝐹 )) + 𝜆‖S‖ ⊛ 

+ Tr((𝐹 − 𝑌 ) 

⊤ 𝑈 (𝐹 − 𝑌 )) 

s.t. 𝑆 

𝑣⊤ 𝟏 = 𝟏, 0 ≤ 𝑆 

𝑣 ≤ 1, 𝐹 ≥ 0, 𝐹 

⊤ 𝐹 = 𝐼,

(25)

From the classification accuracy of the above three models in dif-

ferent proportions of labeled data sets shown in Figs. 5–7, we can see 

that no matter what the ratio of labeled numbers is, the classification 

accuracy of MSFSM is higher than that of MSFS in most data sets, and 

the classification accuracy of MSFSMT is higher than that of MSFSM in 

most data sets, which proves the effectiveness and irreplaceability of 

each part of our model.

Fig. 5. The classification accuracy of different ablation models on a 10 % labeled 

dataset.

Fig. 6. The classification accuracy of different ablation models on a 20 % labeled 

dataset.

Fig. 7. The classification accuracy of different ablation models on a 30 % labeled 

dataset.

5.7. Running time analysis

In Section 4.4, we not only provide a complexity analysis of the 

model, but we also record the actual running time of the model to prove 

the practical feasibility of the model. Table 3 shows the time it takes to 

run all feature selection models once. From Table 3, we can see that the 

running time of our model is not much different from the fastest multi-

view semi-supervised feature selection model, and is within a reasonable 

range, which proves the practical feasibility of the model proposed in 

this paper.
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Table 3 

The running time (in seconds) of one iteration for each comparison method.

TRCA-CGL CFSMO SFSS SFS-SLL MLSFS MASFS SMFS EMSFS MSFSMT

3Sources 89.9595 26.8606 12.5363 30.2559 36.5288 128.2355 102.5842 0.0411 10.9015

handwritten 52.6884 30.2337 26.3050 0.8648 77.5661 304.7852 206.2384 0.2596 20.8065

Caltech101-7 53.5734 27.7353 16.5431 19.0421 39.5523 194.2334 146.5327 1.2248 13.6631

MSRCV1 3.0132 29.1155 3.2604 2.0087 9.2487 50.8465 20.2086 0.1772 1.1097

ORL 3.8105 5.9161 3.5446 1.645 21.9067 74.5211 49.7991 0.5575 1.9482

WebKB 3.4570 6.0994 5.0367 3.6153 7.2665 33.9982 13.8652 0.2849 1.1416

6. Conclusion

In this paper, we propose a new MSFSMT method, which is not only 

an effective extension of the few existing multi-view semi-supervised fea-

ture selection methods, but also studies the application of multi-order 

similarity learning and tensor learning in multi-view semi-supervised 

feature selection. This method can not only use the neighborhood infor-

mation of different orders to build a more reliable graph structure, but 

also use tensor low rank to explore high-order connections between dif-

ferent views. In addition, the model can adaptively obtain a consensus 

indicator matrix and make full use of complementary information be-

tween views. We not only designed an iterative method for the objective 

function, but also proved its convergence experimentally. Experiments 

on multiple basic datasets show the superiority of the MSFSMT method.

Although this method has achieved good results, in the future, we 

still need to reduce hyperparameters to enhance the applicability of the 

model, and we can also extend this method to handle incomplete data.
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