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ARTICLE INFO ABSTRACT

Communicated by G. Yu In multi-view learning, unsupervised feature selection plays a vital role in reducing dimensionality while pre-
serving discriminative information distributed across diverse data modalities. Despite notable progress, existing
approaches frequently exhibit two key limitations: they often overlook the complementary benefits of integrating

fsz:;ogﬁz global structure global and local structural information, and they inadequately model complex nonlinear relationships or align
Graph discrepancy structural representations across views. To address these challenges, we propose a novel framework, termed
Kernel mapping Multi-view unsupervised feature selection based on graph discrepancy learning (GDFS). The proposed method
Multi-view learning jointly constructs global graph structures in a projected low-dimensional space and local graphs in a nonlinear
Unsupervised feature selection kernel-induced space, effectively capturing both high-level semantic structures and fine-grained neighborhood

dependencies. A graph discrepancy term is introduced to explicitly reduce structural discrepancies between global
and local representations, thus enhancing consistency and robustness. In addition, a low-rank tensor constraint
is applied to the stack of global graphs to uncover high-order correlations across views. A consensus clustering
matrix is further learned to provide pseudo-label supervision, which guides the selection of discriminative fea-
tures. Extensive experiments on six benchmark multi-view datasets demonstrate that GDFS consistently surpasses
state-of-the-art methods in terms of clustering performance, thereby confirming its effectiveness, scalability, and
generalizability. The code is available at https://github.com/xyw0111/2025-GDFS.

1. Introduction Nonetheless, the high dimensionality typically associated with multi-
view data poses considerable computational and storage challenges.
From a data perspective [5], the fundamental challenge lies in bal-
ancing complementarity and consistency across views while preserving
key information. To address these issues, dimensionality reduction tech-
niques are commonly employed, which can be categorized into two
main approaches: feature extraction [6-8], which maps original fea-
tures into new lower-dimensional representations, and feature selection
[9,10], which directly identifies salient features by removing redundan-
cies. Among these, feature selection has attracted growing attention
[11,12] due to its unique advantages: (1) maintaining the semantic
integrity of original features [13]; (2) offering better interpretability.
Recent advances in consensus learning [14] and complementary frame-
works [15] have further enhanced feature selection’s ability to handle
view consistency while preserving interpretability.

Multi-view data encapsulates multiple heterogeneous yet comple-
mentary perspectives of the same underlying entity, obtained through
diverse sensors, feature extraction algorithms, or different observational
angles. This data paradigm has become increasingly prevalent across a
wide range of domains. For instance, in image analysis, features such
as Scale-Invariant Feature Transform (SIFT) [1], Histogram of Oriented
Gradients (HOG) [2], and Local Binary Patterns (LBP) [3] offer dis-
tinct characterizations of visual content, each capturing different aspects
of image structure. In text mining, multilingual documents provide se-
mantically varied representations, and in human activity recognition
[4], modalities such as RGB imagery, depth sensing, and wearable de-
vices contribute diverse streams of behavioral information. Compared
with single-view datasets, multi-view data often contain richer and
complementary information, thereby improving the effectiveness of
downstream learning tasks.
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Within this context, multi-view feature selection has emerged as a
vital approach, which offers both interpretability and robustness in han-
dling the complexity of multi-view data. Depending on the availability
of supervision, existing methods are typically classified into supervised
[16,17], semi-supervised [18-20], and unsupervised [21-27] strategies.
Supervised methods leverage annotated labels to guide the selection
of discriminative features, while semi-supervised methods benefit from
both labeled and unlabeled data. In contrast, unsupervised methods
operate without any form of supervision, relying instead on intrinsic
structural properties of the data—a particularly challenging scenario, yet
highly applicable given the scarcity of labeled data in many real-world
applications.

Despite notable progress, existing unsupervised multi-view feature
selection techniques face several critical limitations. Many approaches
emphasize either the preservation of global structure [28] or the mod-
eling of local neighborhood relationships [29], and often neglect the
synergistic interplay between these two structural perspectives. This
dichotomy can lead to incomplete exploitation of the rich structural
information inherent in multi-view data. Furthermore, a substantial
number of methods rely on linear assumptions, which are insufficient
for modeling the complex nonlinear relationships commonly encoun-
tered in practical scenarios. To address this, kernel mapping [30] has
emerged as an effective strategy, as it projects these samples into a high-
dimensional Reproducing Kernel Hilbert Space, thereby enhancing the
model’s ability to capture nonlinear relationships. An additional yet of-
ten overlooked challenge lies in achieving structural alignment across
different views. Without explicit modeling of inter-view consistency, se-
lected features may lack coherence, diminishing their utility. To this end,
we introduce a graph discrepancy term to quantify and minimize the
inconsistency between local and global structures, thereby promoting
structural coherence.

In this work, we introduce a novel framework, termed Multi-view
unsupervised feature selection based on graph discrepancy learning
(GDFS). The overall architecture is depicted in Fig. 1. For each view, lo-
cal graph structures are constructed in a nonlinear kernel-induced space
to effectively capture complex neighborhood relationships. In parallel,
global graph structures are learned from low-dimensional projections,
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which enhance both feature discriminability and structural integrity.
A graph discrepancy term is then introduced to jointly optimize local
and global representations. To uncover shared higher-order relation-
ships across views, all global graphs are stacked into a third-order
tensor, and a tensor nuclear norm is applied to extract common la-
tent correlations. Furthermore, a consensus clustering matrix is learned
to maintain consistency across views and to provide discriminative
pseudo-supervision for feature selection. Collectively, these components
constitute a comprehensive and cohesive framework that advances un-
supervised feature selection by integrating local-global graph modeling,
structural alignment, and multi-view learning.
The core contributions of this study are summarized as follows.

1. We present an integrated framework that concurrently constructs
local and global graph structures to capture the intricate neigh-
borhood relationships and overall distribution, respectively. These
dual representations are coupled via a graph discrepancy term,
which effectively enhances structural coherence and model robust-
ness.

2. To better accommodate the nonlinear nature of real-world data,
local graphs are constructed within a kernel-induced space. This
design allows the model to effectively capture complex nonlinear
relationships, particularly those characterized by curved decision
boundaries, which conventional linear graph constructions are
often unable to represent accurately.

3. An efficient optimization algorithm is developed to solve the pro-
posed objective function, which offers both stable convergence
and manageable computational complexity. The efficacy and prac-
tical value of the proposed approach are validated through ex-
tensive clustering experiments performed on a broad spectrum of
benchmark multi-view datasets.

The structure of this paper is outlined as follows. Section 2 provides
a concise review of methods related to multi-view unsupervised feature
selection. Section 3 introduces our multi-view unsupervised feature se-
lection approach, and also discusses its optimization, convergence, and
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Fig. 1. The overall framework of the proposed method. On the left, multi-view raw features are used to construct local graphs via kernel mapping (top) and global
graphs via low-dimensional projection (bottom). The local graphs Z and global graphs S are jointly aligned through a graph discrepancy term to enhance
structural consistency. All graphs are stacked into a third-order tensor with low-rank regularization to extract cross-view correlations. A consensus clustering matrix
V is learned to further unify graph structures and guide unsupervised feature selection.
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computational complexity. Section 4 presents experimental results on
multiple multi-view datasets. Finally, Section 5 concludes the study.

2. Related work

2.1. Kernel generation

Given a set of data samples {x;} "i , drawn from an input space
X C R%, kernel methods project these samples into a high-dimensional
Reproducing Kernel Hilbert Space (RKHS) H C R% via an implicit fea-
ture mapping ¢(-). Due to the potentially infinite dimensionality of H,
this mapping is typically not explicitly defined, and renders direct com-
putation of embedded representations intractable. Fortunately, Mercer’s
theorem [31] enables the computation of inner products in H through a
kernel function k(-, -) operating in the original input space X, formulated
as:

KIi, j1 = o(x) o(x;) = k(x;, X)), o)

where K[, j] represents the (i, j)-th entry of the kernel matrix K. A list
of commonly used kernel functions is provided in Table 1.

In multi-view learning scenarios, current multi-kernel learning tech-
niques often construct one or more kernels per view, with the primary
objective of improving performance by designing more effective fu-
sion strategies to aggregate discriminative information across views
[32-36]. However, these approaches frequently underestimate a critical
limitation—namely, that the quality of individual kernel often poses a
bottleneck to overall performance. Although several studies have inves-
tigated optimal parameter selection in kernel functions [37], this topic
falls outside the scope of our study. Instead, we introduce a novel kernel
generation paradigm, referred to as Cross-view Multiple Kernels (CMK),
which retains the form and parameterization of traditional kernel func-
tions while offering a principled and structurally coherent approach to
kernel construction, specifically tailored to multi-view settings.

2.2. Unsupervised feature selection via low-rank tensor-based graph
learning

In the absence of supervisory information, the inherent distributional
patterns within data offer a valuable foundation for guiding unsuper-
vised feature selection. Consequently, a wide array of methodologies has
been developed to identify feature subsets that most effectively unveil
the underlying structural characteristics of the data [38]. Conventional
approaches typically employ a two-step procedure: first estimating the
intrinsic structure using the complete set of input features, and sub-
sequently selecting those features that best preserve this structure.
However, such strategies are prone to degradation in performance
when the estimated structure is compromised by noise, redundancy, or
irrelevant variables.

To address these challenges, recent research has proposed integrat-
ing graph learning and feature selection within a unified optimization
framework, thereby enabling mutual enhancement between the two
processes throughout the learning procedure [39]. Building on this foun-
dation, multi-view learning scenarios have inspired the introduction
of low-rank tensor regularization to better capture high-order relation-
ships across heterogeneous feature spaces. Specifically, by assembling
the view-specific similarity graphs or selection matrices into a high-order

Table 1

Representatives of traditional kernel functions.
Kernel type Formulation
Linear ax[x; +¢
Gaussian exp(=lx; — x;[1*/26?)
Polynomial (axx; + o
Sigmoid tanh(ax;'x; + ¢)
Cauchy (Ix; = x;11*/o + n!
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tensor and imposing a low-rank constraint, these methods are capable
of capturing both shared and complementary information across views
[40]. This approach can be mathematically formulated as follows:

min

2
o IWI X = Wi X |55 + QW)+ 1Sl

1

-

n

i

1
. (@)
T _ W) _ ()
SLWIW, =LY s =1,57 20,
j=1
S = o, @ L)) s© =9
.89, ... 8M), s =0.

While such models have shown promising results, they are not
without limitations. First, their reliance on linear projection matri-
ces W, restricts their ability to model complex and nonlinear feature
relationships—an essential characteristic of many real-world datasets.
Second, these methods predominantly emphasize the preservation of
local structural information, and often neglect global data dependen-
cies which are equally critical for comprehensive and robust feature
selection.

3. Methodology
3.1. Preliminary

In this paper, matrices, vectors, and scalars are represented by bold
uppercase letters, bold lowercase letters, and normal italic letters, re-
spectively. n, v, and k denote the number of samples, the number
of views, and the number of clusters, respectively. I, represents a
k x k identity matrix. The data matrix of the mth view is defined as
X" e R%*", Tr(-) and diag(-) represent the trace operator and di-
agonal elements of a matrix, respectively. The Frobenius norm and
I, -norm are denoted as || - || and || - ||, respectively. Additionally,
third-order tensors are represented by bold calligraphic letters, such as
J € Rm>m>"3, The t-SVD-based tensor nuclear norm of .J is defined as
1Tl = X, 1Tl = T B8 189, )], where S is ob-
tained by the SVD on all front slices of .J [z Table 2 summarizes the main
notations used in this article.

Definition 1. The /,;-norm [41] is defined as

d
Wit = Y w2, ®3
i=1

which computes the sum of the #,-norms of all rows in W. This formu-
lation encourages row-wise sparsity, i.e., entire rows of W to become
zero.

Table 2

Summary of notations used in this article.
Notations Descriptions
X" € Réwn Data matrix of the mth view
W € Rénxk Feature weight matrix of the mth view
Sm e R Local similarity matrix of the mth view
7" e R™ Global similarity matrix of the mth view
Ve Rk The consensus clustering result
J € Rmxnxv An auxiliary tensor variable
M g Rmxmxv Lagrange multiplier

=

" An k x k identity matrix

d, The number of features in the mth view
u Penalty factor

n The number of instances

k The number of clusters

v The number of views

a,B.v,p Balancing parameters
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3.2. The proposed GDFS model

3.2.1. Joint global and local graph learning

In unsupervised learning tasks such as clustering and representa-
tion learning, a central challenge is the accurate recovery of the global
structure embedded within high-dimensional data. Traditional methods
typically rely on the full feature space to infer inter-sample affinities;
however, the presence of noisy, irrelevant, or redundant features often
degrades the quality of the constructed similarity graph, and ultimately
impairs downstream performance.

To address this limitation, recent advances advocate a unified op-
timization framework that simultaneously performs global graph con-
struction and feature selection. This joint modeling paradigm enables
mutual enhancement between the two components throughout the
training process. A representative formulation is given by

min “WTX - WTXS”i +QW), st SecC. 4)

where S € R™" denotes a global similarity matrix capturing
reconstruction-based relationships among samples, and W € R¢%¥ serves
as a feature weighting matrix that facilitates the selection of discrimina-
tive features while preserving the global data structure. The constraint
set C and the regularizer Q(W) are designed to promote desired struc-
tural properties, such as sparsity or orthogonality. This formulation
extends naturally to multi-view learning framework.

v
: m\Txm _ m\T xymgm |2 m
g, 2, (HOWmTX" - WX + /W ) -

s.t. (WX xmTwm = .

From a local perspective, preserving fine-grained neighborhood
structures is equally essential. Classical graph construction methods,
such as k-nearest neighbors, often rely on fixed hyperparameters and
Euclidean distances, which make them unsuitable for complex data
geometries and sensitive to noise. To address these issues, adaptive
neighborhood learning has been introduced.

n
min z [Ix; — xj||2z,-j s.t. zl.Tl =1, (6)
z; 4
Jj=1

where z;; denotes the similarity between sample i and sample j. The
term ||x; —X; |2 measures the Euclidean distance between them. A smaller
distance leads to a larger value of z,;;, which encourages the model to
assign higher similarity scores to truly relevant neighbors. By generaliz-
ing single-view subspace learning to multi-view cases, Eq. (6) is further
expressed in the following matrix form.

v n

%; ,Zl " —xm2z st (2 1=1. @

Moreover, local graph learning focuses on preserving fine-grained
geometric relationships among neighboring data points. Real-world
datasets commonly exhibit complex nonlinear patterns at the local level,
which are difficult to model accurately in the original space. Kernel map-
ping helps to linearize these nonlinear local structures by projecting the
data into a high-dimensional space, where local neighborhood relation-
ships become more distinguishable. As such, applying kernel mapping
in local graph learning facilitates the construction of more expressive
and discriminative neighborhood graphs, thereby enhancing the effec-
tiveness of feature selection. Kernel extension of Eq. (7) can be obtained
as

v n
minp 3 ¥ 17X = " (XI5 Z];
m=1i,j=1 ®
stdiag(Z™) = 0,z" 1= 1,

where the function ¢™(-) represents nonlinear mapping. Conventional
graph learning often focuses on either global or local structures, which
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limits its ability to model complex multi-view data. We propose a uni-
fied framework that integrates global graph learning with kernel-based
adaptive neighborhood modeling to capture multi-level structures.

Specifically, global graph learning focuses on modeling the overall
data distribution and typically constructs the similarity graph directly
in the original feature space. This approach is computationally effi-
cient and robust, which makes kernel mapping generally unnecessary.
In contrast, local graph learning emphasizes fine-grained neighborhood
structures. By projecting data into a high-dimensional space through
kernel mapping, it becomes possible to uncover latent nonlinear re-
lationships, thereby enhancing the expressiveness and discriminative
power of the learned adjacency graph. Our method can be formulated
as

v
. W TXm W™ TXm m 2 wn
Zm’l'nlgll’sm m§=l (”( ) ( ) S ”F rll ”2,1

) n¢f"<x¢")—¢f"<x;">n§zf?> ©

ij=1
s (WX xXmTw” = 1,
diag(Z™) = 0,(z" 1= 1,Z" > 0.

To fully exploit the complementary strengths of global and local
graph structures, we introduce a graph structure alignment mechanism.
Specifically, we adopt a Frobenius norm-based graph discrepancy term
that encourages the consistency between the global and local graphs dur-
ing optimization. Even when these graphs are constructed from different
perspectives or feature spaces, such as the projected space and a kernel-
induced space, this mechanism ensures structural alignment, thereby
enhancing the discriminative power and coherence of the learned graph.

Our design is inspired by the TAML framework proposed in [42],
the term ||X — J7||fr is employed to enforce consistency between the co-
efficient tensor X, which captures global self-representation structures,
and the similarity tensor ¥, which models local geometric relationships
via adaptive graphs. Although & and Y originate from distinct model-
ing approaches, they fundamentally encode pairwise sample affinities
and share a common semantic structure based on sample indices, which
makes direct alignment meaningful. Furthermore, the Frobenius norm
is computationally efficient and differentiable, which makes it tractable
during optimization.

The corresponding formulation is presented as follows.

v
. m\T s m m\T xmQm |12 m
szélv‘i«l,smz(”(w )X — (W X"S™ [+ W™l

m=1

n
2 B 2
+p 2 llomx - ¢M<X;">||22:;> +3ls - 213
i,j=1 (10)
st (Wm)TXm(Xm)Twm =1,Z= (IJ(Z(I), Z(Z)’ ,Z(m)),
diag(Z™ = 0,(z")1=1,Z" > 0,

S=o@lM, 8@ .. s

where the function ®(-) stacks multiple view-specific representations
Z™ or 8™ into a third-order tensor Z or S.

3.2.2. Low-rank constraint regularization

Although conventional regularization strategies effectively constrain
the representation within each individual view, they often fall short in
capturing the intrinsic inter-view correlations and high-order dependen-
cies that are essential to multi-view learning. To address this limitation,
we leverage recent advances in low-rank tensor learning [43-46] and in-
corporate a tensor nuclear norm regularization based on tensor singular
value decomposition (t-SVD). This constraint is applied to the subspace
similarity representations, which facilitates the extraction of comple-
mentary information embedded in the high-order interactions across
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multiple views. Specifically, the proposed model is formulated as

min ||S||®
11
s.t.S=dESWM, 8P, .. 8O, v

where the similarity matrices from each view, S',8?%,...,S" are aggre-
gated into a third-order tensor S € R"™"*’. The t-SVD-based tensor
nuclear norm ||S||g imposes a low-rank structure on S, which encourages
compactness while preserving latent structural dependencies shared
across different views.

Remark 1. Fig. 2 illustrates the computational pipeline of the t-SVD-
based tensor low-rank approximation used in our model. Given multiple
view-specific self-representation matrices SV, ..., %), they are first
stacked into a third-order tensor S € R™™V . This tensor is then ro-
tated (or transformed) into S for better alignment along the third (view)
mode.

Next, the t-SVD (tensor singular value decomposition) is applied:

S=U=xCcxVT,

where U and V are orthogonal tensors, and C is an f-diagonal core tensor
containing the tubal singular values.

To promote low-rank structure and suppress noise, a tubal-shrinkage
operator is applied to C in the Fourier domain, which yields a shrunk
core tensor C. The updated tensor is reconstructed via the t-product:

S<U«CxVT.

Finally, the inverse rotation transforms S back to the original ten-
sor space for downstream clustering or selection. This process enables
effective multi-view structural modeling with shared low-rank priors.

3.2.3. Consensus clustering

In multi-view learning, each view offers a distinct yet complemen-
tary representation of the underlying data. To effectively integrate these
heterogeneous sources, consensus clustering aims to identify a unified
clustering assignment that reflects the shared structural patterns across
all views. This is accomplished by learning a consensus indicator matrix
that approximates the aggregated similarity matrices derived from all
views. Formally, the consensus clustering objective is defined as

zv“ S"—vvVT
m=1

st.VIV=I,

2
min
Sm

. a2)

where V € R denotes the consensus cluster assignment matrix, and k
is the predefined number of clusters.

—> U
2 3
3 =
o T
Tubal-
Shrinkage
—
t-SVD
S -« — v
t-Product
Fig. 2. The Flowchart of t-SVD-MSC. S, ...,8%"), into a tensor S, and then

rotates to S; the § will be updated by using t-SVD based tensor multi-rank
minimization.
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3.2.4. Overall objective function
By integrating the above three components, we obtain the final
objective function.

B

allSllg + 511S - ZI}

min
Zm W .Smy

v
+y <||(W’">TX’" = (W"TX"S™ |13 + 7 [[W" ]I,
m=1

+p ) ||¢’"(X;">—¢’"<X;">||§Z,.";>

ij=1
v 2 13
+[ Y sm-vv"

m=1

F
s.t. (WHTX"X"TW" = 1, VIV = I,
Z=oZD, 2P, ..., 7M), diag(Z™) =0,
@"'1=1,2" >0,
S=o@6W,s@ . sV
3.3. Optimization

In the presence of multiple interdependent variables, obtaining a
closed-form solution to the constrained optimization problem in Eq. (13)
becomes analytically intractable. To address this challenge, we refor-
mulate the original objective into a sequence of more manageable
sub-problems and solve them iteratively using the Alternating Direction
Method of Multipliers (ALM-ADM) within the Augmented Lagrangian
framework.

To facilitate the decoupling of the objective function and enable
efficient optimization, we introduce an auxiliary tensor variable J €
R™"Xv_The reformulated objective is expressed as follows.

B

min el Tllg + 1S = 217

Z"‘,W”’,S"’,V
12
+y <||<W'">TX"’ = (W™X"S™ |5 + 7 W™l

m=1

+0 ) ||¢M<x:">—¢m(x;">n§z;;>

ij=1

v 2 14
+[ Y sm-vv"

m=1

F
st. (WhHIxmxmyIwm = 1, VIv=1,,
Z=o@ZWV,Z?, .. ZM), diag(Z™) = 0,
@H'1=1,2Z" >0,
S=08",8?, ... 8V, J =3,
The corresponding augmented Lagrangian function is then formulated

as

2

al Tl + 4 |7 - (s+24)

min
Zm W .Smy F

v
+Y (n(W’")TX'" = (WMTX"S™ 3. 4+ W™l
m=1

> ||¢’"(x;")—¢"’<x;?’>||§z;7>
ij=1
, ) (15)
+5IS = 2l% +

v
Y sm-vvh
m=1 F
s.t. (WHTXmxX™Tw” = 1, VIV =1,
Z=oZM, 2P, ..., 7™, diag(Z™) =0,
@H'1=1,2" >0,
S = CD(S(”, S(Z), ,S(”))
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where M € R™"¥ denotes the Lagrange multiplier tensor and u is a
positive penalty parameter. Following the the alternative minimization
strategy, we decompose the problem in Eq. (15) into a set of sub-
problems, each of which optimizes single variable while keeping the
others fixed. The complete optimization procedure is detailed in the
subsequent sections.

1) Z™-Subproblem: When all other variables are held constant, the
subproblem with respect to Z" is expressed as

n
min 2115 = 21+ X, 17X = "X
ij=1

(16)
st. Z =@M, Z?, ... Z), diag(Z™) = 0,
@"'1=1,Z" > 0.
Let d¥ = |Ix, — x;|I> = x"x; + x/ij - 2xTx; denote the squared

Euclidean distance between samples x; and x; in the original feature
space. This pairwise distance can be compactly represented in matrix
form as D* = Diag(XX7)117 + 117 Diag(XX") — 2XX”, where Diag(XX")
denotes a diagonal matrix containing the diagonal elements of the Gram
matrix XX7 [47]. Extending this formulation to the reproducing kernel
Hilbert space (RKHS), the pairwise distance between samples in the m-th
view is defined as (d{;f)x = llo"X") - d’"’()(’/'-")ll2 = (¢"’(x§"))r¢m(x;") +
((b'"(x;,"))Tqb'"(x;.”) - 2(¢m(x;"))T¢'"(x;"), where ¢™(.) denotes the implicit
nonlinear mapping associated with the kernel function of the view. Let
K™ = (X" $(x™) denote the corresponding kernel matrix. The
resulting distance matrix in RKHS is then given by

(D™)* = Diag(K"™)117 + 117 Diag(K™) — 2K™. an

Given that CID(‘”:)(Z) = Z™ and <I>(‘n}>(5) = S, Eq. (16) can be
equivalently reformulated in a trace-based representation as follows:

. P 2 T rrymyx
min = [IS" — Z" |3 + p Tr((Z™)” (D™)")
V70 F (18)
st. diag(Z™) =0,z '1=1,Z" > 0.

To derive the analytical solution to the optimization problem defined
in Eq. (18), we set the derivative with respect to Z" to zero, which yields

pD"
Zm =§m - (19)
B

2) W"-Subproblem: By omitting irrelevant components, the subprob-
lem corresponding to the projection matrix W"” for the view can be
reformulated as

min [[(W™")T X" — (W™TX"S™ |12+ y[[W" |l
wm (20)
s.t. (WhHTxmxmTwm = .

To address the non-smooth nature of the /,, regularization, we in-
corporate a diagonal weighting matrix D,,, whose diagonal elements are
defined as

1
D,y=—7—"—, 21

max (2| W2, .¢)

to prevent numerical instability caused by the singularity condition
”WI'" ”2 =0, a small positive constant ¢ is introduced as a regularization

term. By defining U” = (I" — S") (I" — $™T and incorporating Eq. (21),
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the subproblem for optimizing W” can be reformulated as follows

: m\T mym xym\T m
nvwlTr[(w " (XUm X 44D, ) W ] )
s.t. (WHTX"(X™MTW™ = |,

The optimal W™ can be obtained by solving the following generalized
eigen-problem

(XU X7 47D ) W= ATXT XYW, (23)

where A™ is a diagonal matrix whose entries correspond to the asso-
ciated eigenvalues. It should be noted, Eq. (23) requires X™(X™)T is
non-singular. Furthermore, the computational complexity of this solu-
tion is O (d3 + nd?), which renders it inefficient for high-dimensional
data. To circumvent these challenges, we adopt the method proposed
in [48], which approximates the optimal W"” by solving the following
problem

min [Y" = X" H" 15 + 7IW" [l (29)

where Y™ consists of the eigenvectors associated with the k small-
est eigenvalues derived from the spectral decomposition U”Y"
A™Y™, Using the diagonal matrix defined in Eq. (21) and the Iterative
Reweighted Least-Squares (IRLS) [49] algorithm, the optimal W™ can
be obtained by

W = (X'”(X”’)T + yD’")qX’"Y’”. (25)

3) S™-Subproblem: We define d);,r})(g) = Jm, q>(*nf)(s) = S and
CD(’;)(M) M. With all other variables fixed, the optimization
subproblem concerning the affinity matrix S” for the m-th view is
formulated as follows:

m m M" : ﬂ m _ gm) 2
(s +7)HF+§”S 7"
+ WX — (W XS (26)
2

.ou
min —
Sm 2

i s" —vvT

m=1

+

F

To derive a closed-form solution, we introduce the notation Q" =
xmTwm(wmT'Xm, By setting the gradient of the objective in Eq. (26)
with respect to S” to zero, we obtain the following analytical expression:

14
S"=QQ" +Q2+u+pI,)" <2 <Q”’ +VVI - s")
v#EmM (27)

+ LM — uJ —M'“).

4) V-Subproblem: By means of elementary algebraic manipulations,
the optimization subproblem with respect to V' can be reformulated as

12
minTr [VT (L, -2 Y ™" |v
v ( ,,Z‘l (28)
st. VIV =1,

The optimal solution for V is obtained efficiently through SVD, which
guarantees an orthonormal basis satisfying the orthogonality constraint.

5) J-Subproblem: By excluding terms that do not affect the cur-
rent optimization, the subproblem for the auxiliary tensor variable J
simplifies to

M 2

7= (s+57)

u

i = 29
minall7 o + 5 29)

F

Letting X = S + %, Eq. (29) can be efficiently addressed by applying
Theorem 1 [50], which states:
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Theorem 1. Consider third-order tensors J,X € R"1>"X" and a positive
scalar a > 0. The problem

. 1
rrgnalljllég +507 - X3 (30

admits a closed-form solution via the tensor tubal-shrinkage operator given
by

J = Cnyo(X) = U 5 Oy (0) + VT (31)

where X = U + O + VT and Cn,:(0) = O + Y. Here, Y € R"¥"X is an
f-diagonal tensor, with its diagonal elements of Y is defined as

Yyp(isi,j) = (1 = (N37 /O, i, ), (32)

The principal stages of the proposed method’s optimization process
are delineated in Algorithm 1.

Algorithm 1 GDFS.[51].
1: Input: Data matrix X,, and parameters «, 4,7, p.
2: Initialize: S,, by WPKN algorithm [51], W,, = rand(d,,.k), Z =
rand(n, n), V = rand(n, k).

: repeat

Update Z,, by Eq. (19);

Update W,, by Eq. (25);

Update S,, by Eq. (27);

Update V by Eq. (28);

Update J by Eq. (29);

. . ()bj("l)—objm .
: until T < eps,
)

© XD AW

10: Output: Feature weight matrix W,,,.

11: Feature selection: Arrange all features of the multi-view data in
descending order according to ”W and select the k top-ranked
ones.

mlzdl Hz

3.4. Analysis

Convergence: Given that Algorithm 1 contains multiple iterative up-
dates, it is important to discuss its convergence behavior. Theoretical
results have shown that the Alternating Direction Method (ADM) con-
verges under certain conditions when only two variables are updated
alternately [52]. However, when the number of variables increases to N
(N > 3), proving convergence becomes significantly more challenging
[53]. In our case, the algorithm simultaneously updates several vari-
ables, which include Z™, W™, S" V, and [J, which complicates the
derivation of strict theoretical guarantees.

Nevertheless, GDFS mitigates the risk of reinforcing noisy or subop-
timal clustering partitions through a joint optimization framework that
ensures mutual enhancement between the consensus clustering matrix
V and feature selection. Specifically, the alternating optimization strat-
egy guarantees that each update of V is conditioned on the most recent
feature selection result, and vice versa, which ensures progressive re-
finement toward a more robust consensus. Additionally, the imposed
low-rank constraint on the global graph tensor J helps filter out cross-
view inconsistencies, which in turn stabilizes the pseudo-labels and
improves convergence behavior.

Moreover, each subproblem in our framework has an optimal solu-
tion, which ensures the reduction of the objective function and further
improves the overall performance. Empirically, as shown in Section 4.6,
our algorithm consistently converges within a few iterations on multiple
real-world datasets.

Complexity: The computational burden of the method is primarily
dictated by the iterative updates of these five variables. The update of
Z" requires matrix inversion, leading to a complexity of o(rn*). Updating
W™ involves solving an eigenvalue decomposition combined with sparse
feature selection, incurring a complexity of O(kn? + d3). Similarly, S”
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demands matrix inversion, also resulting in O(»n*) complexity. SVD for
updating V contributes O(kn*) complexity. The update of .J requires 3D
Fast Fourier Transforms (FFT) and inverse FFTs on an n X v X n ten-
sor, coupled with n SVD computations on n X v matrices within the
Fourier domain, which culminates in a complexity of O(2n?vlog(n)).
By aggregating across all views, the total per-iteration complexity is
own® + 30 _, d3 +2n’vlog(n)).

Discussion: GDFS embodies several notable advantages. By integrat-
ing both local and global graph structures, it captures overall distri-
bution and the neighborhood information of data, thereby facilitating
richer and more nuanced representations of sample interrelationships.
The adoption of kernel mappings enables the exploration of nonlinear
local structures, while global graph constraints preserve structural con-
sistency across different views. The introduction of a graph discrepancy
term effectively aligns heterogeneous graphs, which fosters a robust and
unified feature selection mechanism. Additionally, the imposition of a
low-rank tensor constraint on the stacked global graphs enhances cross-
view correlation modeling, which is particularly advantageous when
handling heterogeneous data sources. To the best of our knowledge,
this method represents one of the first attempts to synergize graph dis-
crepancy learning with consensus pseudo-label guidance in multi-view
unsupervised feature selection.

4. Experiments
4.1. Datasets and compared methods

In this section, we assess the efficacy of the proposed GDFS method
across a suite of real-world multi-view datasets. Detailed characteristics
of these datasets are summarized in Table 3.

To comprehensively evaluate GDFS, we carried out extensive com-
parative experiments with both classical and state-of-the-art multi-view
feature selection algorithms. A brief overview of these competing ap-
proaches is provided below. In addition, to further verify the effec-
tiveness of our method in capturing cross-view correlations, we also
include SLNMF (Soft-label guided Non-negative Matrix Factorization for
Unsupervised Feature Selection) [54], a recent single-view feature se-
lection method. Since SLNMF is not designed for multi-view data, we
follow a common practice of concatenating all views before applying
feature selection. The performance is evaluated on the same datasets as
our method to ensure fairness.

(1) ASVW [55] first learns an underlying consensus graph and then
utilizes this consensus graph to ensure that the transformed data
preserves local structures.

(2) CGMV-FS [15] employs non-negative matrix factorization along-
side consensus learning to extract informative features spanning
multiple views.

(3) CRV-DCL [56] maps the original data into a shared label space, de-

composed into consensus and diversity components, to effectively

identify discriminative features.

TLR [40] integrates multiple graphs into a tensor-based frame-

work regulated by low-rank constraints, which capture high-order

inter-view dependencies.

(4

—

Table 3

Details of datasets.
Datasets Class View Samples Features
Outdoor Scene 8 4 2688 512,432,256,48
ORL 40 3 400 4096,3304,6750
handwritten 10 6 2000 76,216,64,240,47,6
3Sources 6 3 169 3560,3631,3068
MSRCV1 7 5 210 24,576,512,254,256
Yale 15 3 165 4096,3304,6750
WebKB 4 3 203 1703,230,230
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Table 4
Clustering performance on different datasets.
Dataset Metric ASVW CGMV-FS CRV-DCL TLR CCSFS CDMVFS PTFS SLNMF GDFS
Outdoor Scene ACC 47.22 +1.47 26.61 +0.83 61.71 + 3.64 44.83 + 2.94 61.45 + 3.56 62.60 + 4.38 62.53 + 4.26 47.52 + 2.32 65.79 + 3.20
NMI 3991 +£1.17 11.74 +0.46 49.14 + 0.43 38.11 + 1.12 51.88 +1.91 52.19 + 0.63 53.70 + 1.23 40.24 + 0.90 54.23 + 1.45
ARI 28.53 +0.52 6.58 +0.30 40.57 + 0.71 25.79 + 1.20 41.05 +1.73 41.74 + 1.68 43.11 + 2.49 28.68 + 0.81 45.21 + 2.05
F-score 38.10 £ 0.47 19.37 +0.70 48.39 + 0.58 35.75 + 1.00 48.70 + 1.47 49.38 + 0.89 50.60 + 1.93 38.18 + 0.70 52.30 + 1.75
Precision 36.25 +0.77 18.00 + 0.30 46.79 + 2.51 33.85 +1.34 47.65 + 1.75 48.57 + 3.02 48.96 + 3.44 36.69 + 0.91 51.37 + 2.25
ORL ACC 33.33 +1.53 32.56 +1.36 55.08 + 2.72 53.94 + 3.26 58.98 + 2.85 61.59 + 3.01 61.31 + 3.46 33.55 +1.53 64.30 + 2.50
NMI 55.40 +1.23 54.88 +1.49 74.02+1.79 73.66 + 1.38 76.88 + 1.82 78.50 + 1.87 78.29 + 2.21 56.04 + 1.50 80.33 +1.71
ARI 1474 +1.00 1443 +1.11 40.68 + 2.98 39.32 +2.72 4591 + 3.13 49.09 + 3.42 48.57 + 4.33 15.23 + 1.06 52.16 + 3.29
F-score 1710 +0.90 16.82 +1.01 42.22 +2.90 40.94 + 2.63 47.29 + 3.03 50.37 + 3.32 49.89 + 4.20 17.57 + 0.98 53.36 + 3.21
Precision 14.04 +1.01 13.64 +1.22 36.70 + 2.92 35.16 + 4.10 41.90 + 3.38 45.01 + 3.49 43.99 + 4.49 14.48 +1.30 48.00 + 3.29
handwritten ACC 79.60 +7.86 66.69 +4.77 78.78 +6.14 83.77 +7.28 82.31 + 5.56 87.10 + 5.79 85.44 +7.38 80.45 + 6.60 88.01 + 6.14
NMI 77.76 + 3.80 66.57 + 3.09 78.69 + 2.92 82.89 + 4.16 81.91 + 4.19 82.88 + 2.63 84.24 + 2.43 78.22 + 3.87 86.17 + 3.43
ARI 71.26 £ 6.36 55.02+4.71 71.90 + 4.63 77.52 +7.22 76.06 + 7.07 78.62 + 5.52 78.77 + 5.88 72.31 +7.10 82.46 + 6.60
F-score 74.27 +£5.62 59.73 +4.15 74.86 + 4.10 79.85 + 6.42 78.58 + 6.27 80.81 + 4.91 80.97 +5.21 75.20 + 6.28 84.29 + 5.85
Precision 71.30 +7.02 56.94 + 4.83 71.31 +5.87 77.29 + 8.06 75.17 + 8.12 79.30 + 6.40 78.51 +7.17 72.38 + 8.14 81.65 + 8.25
3sources ACC 43.46 +5.79 42.41 +5.79 47.96 + 8.62 47.34 + 6.70 51.70 + 8.04 48.14 + 4.81 51.54 + 8.86 50.21 + 8.19 53.08 +7.71
NMI 19.85 +6.39 17.60 +4.83 2895+ 11.08 29.89 +8.43 28.97 + 8.90 25.85 +9.51 33.72 + 7.41 25.64 +7.22 31.33 + 6.51
ARI 7.39 + 8.59 5.94 + 6.52 16.94 +11.89 16.00 + 9.94 21.01 +11.61 15.63+17.17 21.20+11.81 1593 +13.91 22.50 + 13.89
F-score 37.25+4.75 36.99 +3.09 42.50 +6.72 41.27 + 6.42 45.46 + 6.53 43.96 + 9.56 45.91 + 6.43 43.04 + 8.26 46.01 + 8.49
Precision 27.22 +5.05 26.36 +3.59 32.85+6.91 32.17 + 5.66 34.96 +7.13 31.58 + 9.40 35.72 + 7.74 31.89 +7.91 36.74 + 9.75
MSRCV1 ACC 69.38 + 6.27 67.02+7.32 75.19+5.28 78.81 + 8.33 76.78 + 6.79 82.26 + 5.44 84.51 + 6.39 77.81 + 6.19 84.36 + 7.93
NMI 61.18 +3.66 58.37 +4.02 68.99 + 6.68 73.17 + 7.64 71.18 + 5.60 75.39 + 6.57 78.29 + 5.58 71.82 + 5.96 78.72 + 6.55
ARI 52.32+4.88 48.86+7.12 60.23 +7.03 66.87 +11.36  63.45 + 8.23 67.94 +9.73 73.08 + 10.33 65.07 + 8.28 73.03 + 9.09
F-score 59.31 +4.10 56.37 +5.95 66.14 + 8.09 71.79 + 9.49 68.91 + 6.81 72.70 + 8.06 76.98 + 8.70 70.29 + 6.82 76.91 +7.71
Precision 56.22 + 4.53 53.66 + 6.27 62.95 + 6.95 68.43 +11.86 64.98 + 6.47 69.45 + 5.76 74.83 +10.49 66.20 + 6.78 74.97 + 8.97
Yale ACC 43.82 +2.61 43.76 +2.44 52.00 + 5.02 49.58 + 4.35 52.38 + 5.17 56.27 + 5.64 60.40 + 3.90 45.45 + 3.28 60.58 + 6.77
NMI 49.65 + 2.55 49.29 +1.70 60.47 + 4.86 54.62 + 3.18 56.75 + 4.38 60.49 + 5.21 67.28 + 5.10 50.80 + 2.42 66.04 + 4.73
ARI 2347 +1.69 2335+171 36.12+7.44 29.84 + 3.66 32.70 + 5.79 37.22 +5.48 46.00 + 7.47 24.25 + 1.54 44.89 + 6.90
F-score 28.78 +£1.50 28.69 +1.58 41.06 + 6.59 34.65 + 3.18 37.22 +5.35 41.38 + 6.39 49.69 + 6.83 29.51 +1.31 48.53 + 6.39
Precision 25.33 +1.86 25.10+1.60 33.02 +7.44 31.12 + 4.11 33.88 +5.29 38.38 +5.44 44.95 + 7.51 26.01 + 1.86 45.07 + 6.78
WebKB ACC 56.60 + 6.06 57.01 +6.51 73.30 +0.79 78.60 + 1.28 74.52 +7.16 76.35 + 8.30 76.49 + 6.38 73.92 + 5.32 77.78 + 7.62
NMI 15.83 +7.77 1519+ 6.42 41.37 +3.72 44.15 + 4.56 48.21 + 5.84 47.97 + 5.87 48.81 + 3.67 43.10 + 4.83 48.34 + 3.55
ARI 13.20 +8.96 13.29+7.07 44.66 + 5.85 56.18 + 2.15 53.66 + 8.87 54.55 + 7.07 57.75 + 7.88 48.31 + 8.29 56.60 + 5.28
F-score 54.97 + 0.57 54.93 +0.58 65.30 +5.78 74.73 + 1.46 71.67 + 6.60 72.76 + 5.28 75.12 + 5.75 68.81 + 4.53 75.20 + 6.30
Precision 46.33 +5.22 46.57 + 4.28 69.75 + 2.93 70.24 + 3.49 74.13 + 2.41 72.82 + 2.47 73.73 + 2.11 71.94 + 2.09 75.83 + 3.42
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Fig. 3. The best ACC of different methods.

(5) CCSFS [57] leverages partition-level information to build a con-
sensus label matrix, which enhances the discriminative capability
of selected features.

290

(6) CDMVFS [28] produces multiple mutually exclusive graphs to
strengthen inter-view complementarity, and couples graph learn-
ing with clustering through consistency measures.
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Fig. 4. The best NMI of different methods.

Table 5
The paired t-test results of ACC of GDFS and comparison algorithms on all datasets.
Method Outdoor scene ORL Handwritten 3sources MSRCV1 Yale WebKB
h p h P h P h P h P h p h P
TLR 1 7.83 E-21 1 6.90 E-26 1 5.82 E-15 1 1.55 E-15 1 4.78 E-14 1 4.69 E-25 1 8.90 E-09
CCSFS 1 2.73 E-08 1 1.84 E-22 1 4.59 E-18 1 1.93 E-07 1 4.78 E-20 1 1.02 E-20 1 1.25 E-04
CDMvVFS 1 4.59 E-07 1 1.71 E-10 1 8.12 E-11 1 1.01 E-11 1 1.26 E-08 1 6.85 E-17 1 3.89 E-02
PTFS 1 4.68 E-05 1 7.64 E-04 1 1.71 E-12 1 5.40 E-03 0 4.16 E-02 0 4.22 E-01 0 5.56 E-02
Table 6
The paired t-test results of NMI of GDFS and comparison algorithms on all datasets.
Method Outdoor scene ORL Handwritten 3sources MSRCV1 Yale WebKB
h p h  p hop h p h p h p h p
TLR 1 1.21 E-17 1 5.80 E-24 1 2.36 E-14 1 1.94 E-11 1 1.31 E-08 1 5.00 E-27 1 7.72 E-09
CCSFS 1 4.49 E-09 1 2.05 E-21 1 6.74 E-13 1 9.55 E-11 1 1.09 E-16 1 2.30 E-24 1 4.20 E-03
CDMVFS 1 1.04 E-08 1 6.95 E-10 1 6.40 E-14 1 7.57 E-16 1 1.65 E-09 1 1.01 E-18 1 1.30 E-03
PTFS 1 1.94 E-03 1 2.18 E-04 1 1.21 E-09 0 5.65 E-02 0 5.70 E-02 0 5.11 E-02 0 1.81 E-01
Table 7
Comparison of metrics across noise levels in WebKB.
Noise a ACC NMI ARI F-score Precision
0 77.78 £ 7.62 48.34 + 3.55 56.60 + 5.28 75.20 + 6.30 75.83 + 3.42
0.1 77.76 + 5.47 48.41 + 3.18 56.59 + 5.11 75.09 + 8.83 74.04 + 2.23
0.3 76.28 + 3.26 44.62 + 3.72 53.33 + 4.03 71.79 + 2.61 71.36 + 2.65
0.5 72.98 + 2.77 42.29 + 3.49 49.00 + 3.02 69.12 + 1.83 68.94 + 2.22

(7) PTFS [58] integrates discriminative partition information and
applies self-paced learning strategies to improve unsupervised
feature selection performance.

(8) SLNMF [54] utilizes a soft-label matrix based on local distance
for supervision, and employs linear regression to correlate low-
dimensional representations with label space, which effectively
reduces redundancy, outliers, and noise.

4.2. Experimental setup

In this study, we assess the informativeness of the selected features
through systematic clustering experiments. The evaluation follows
a structured criterion: initially, features extracted from multi-view

datasets are ranked using a variety of feature selection methods.
Subsequently, the top k features are selected in descending order, with k
varying over the set {10, 20, 30, ..., 280, 290, 300}, to construct a series of
reduced datasets. Each dataset is then subjected to k-means clustering,
which produces 20 independent clustering results per k. The predicted
clusters are compared with ground truth labels, and the mean perfor-
mance across these 20 runs is reported. Given the well-known sensitivity
of k-means to initialization, this repetition enhances the robustness and
reliability of our evaluation.

The primary aim of this study is to evaluate the effectiveness of the
proposed method in addressing nonlinear problems, rather than focusing
on the choice of kernel functions or parameter tuning. Accordingly,
we adopt the widely used Gaussian kernel function, i.e., K(x,y)
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tdiax

2 . .
exp (— M ), where d,,, denotes the maximum distance between sam-

ples, to capture the nonlinear structure of the data. To limit the number
of parameters, a fixed-parameter strategy is applied with 7 = 1. In future
work, we intend to further investigate the influence of alternative kernel
functions and parameter settings on model performance.

To provide a comprehensive performance assessment, six widely
accepted metrics are employed: accuracy (ACC), normalized mutual
information (NMI), adjusted Rand index (ARI), F1 score, precision,
and recall, with detailed descriptions available in [59]. For all met-
rics, higher values indicate the superior performance. Parameter set-
tings for comparative feature selection algorithms are adopted from
their respective original studies to ensure fairness. Specifically, for
CCSFS, parameters § and y are tuned across {23,25,27,29 211}, while
4 is varied within {0.001,0.005,0.01,0.05,0.1,0.5,1}. For CDMVFS, p
spans the same range {23,2°,27,2°,2!'}, and y is explored over
{0.001,0.005,0.01,0.05,0.1,0.5, 1}. In our method, the parameter p is ad-
justed within {0.2,0.4,0.6,0.8, 1}. To further guarantee impartiality, the
remaining hyperparameters across all methods are varied over the range
{1072,1071,1,10',10%). This setting is consistent with the parameter
ranges used in baseline methods such as CCSFS and CDMVFS, which
ensures the fairness of comparative experiments.

4.3. Experimental results

Table 4 provides a detailed summary of the experimental outcomes
assessed using six standard evaluation metrics. The highest scores for
each metric are marked in bold, while the second-best results are under-
lined for clarity. Figs. 3 and 4 further illustrate the impact of the varying
number of selected features on clustering performance. Meanwhile,
the results of the paired t-test are shown in Tables 5 and 6. Across
the outdoor_scene_new, ORL, and handwritten datasets, the proposed
method consistently achieves the superior performance compared to
its counterparts. Notably, CDMvFS and PTFS also exhibit competitive
results. In terms of ACC, our method achieves relative improvements
of 3.19 %, 2.71 %, and 0.91 % over the second-best methods on the
outdoor_scene_new, ORL, and handwritten datasets, respectively. With
respect to NMI, performance gains of 0.53 %, 1.83 %, and 0.91 % are
recorded. ARI is enhanced by 2.1 %, 3.07 %, and 3.69 %, while the F-
score sees improvements of 1.7 %, 2.99 %, and 3.32 %. For precision,
the proposed method outperforms the closest competitors by 2.41 %,
2.99 %, and 2.35 %, respectively.

From these tables and figures, we can draw the following conclu-
sions.

(1) The paired 7 test results confirm GDFS’s superior performance
across most datasets. For ACC, GDFS showed significant improve-
ment 2~ = 1 in most cases(25/28), with particularly excellent
results on Outdoor Scene, ORL, handwritten and 3Sources. A
similar trend is seen in NMI, where GDFS achieves A~ = 1 in
most comparisons(24,/28), A paired t-test between GDFS and PTFS
yielded a result of 4~ = 0 on MSRCV1, Yale, and WebKB datasets,
which indicates that the observed performance differences are not
statistically significant at the 5 % level. Furthermore, GDFS re-
mains highly competitive and demonstrates consistent advantages
across other datasets.

GDFS consistently ranks among the top performers across most
experimental metrics, with particularly strong results on image
datasets like ORL and Outdoor Scene. Its effectiveness stems from
the joint modeling of local and global graph structures, non-
linear kernel mapping, and the integration of feature selection
with consensus clustering. The incorporation of low-rank tensor
constraints further enhances robustness by capturing cross-view
consistency and reducing noise. GDFS also performs competitively
on other image datasets like MSRCV1 and Yale, which con-
firms its generalizability. While PTFS leverages a statistics-based
adaptive self-paced strategy, GDFS achieves comparable results

(2)
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without relying on external priors, underscoring its simplicity and
effectiveness.

GDFS achieves the best performance across all metrics on the
Handwritten dataset, which highlights the effectiveness of its de-
sign. The dataset’s clear class separation favors view-invariant and
structurally consistent pseudo-label learning. By integrating graph
structure modeling with consensus clustering, GDFS learns highly
discriminative shared labels, and leads to strong results. While
CDMVEFS also performs well, GDFS further benefits from low-
rank tensor constraints and kernel-based local structure modeling,
which offer better robustness and more stable performance.

On the WebKB dataset, GDFS achieves the best or second-best per-
formance across four evaluation metrics. Notably, PTFS proves to
be an effective method, attaining the highest scores in NMI and
ARI. These results indicate that our approach is capable of effec-
tively grouping samples into their correct categories. However,
due to the blurred boundaries between classes and the presence
of local noise in the WebKB dataset, some individual metrics may
exhibit suboptimal performance.

3

4

4.4. Noise robustness

To evaluate the robustness of our method against additive Gaussian
noise, we conducted experiments on the WebKB dataset by injecting
scaled noise sampled from N'(0, 1) with progressively increasing scal-
ing factors (noise levels) of 0.1, 0.3, and 0.5. Here, a noise level of «
indicates that the additive noise is « - A'(0, 1), where a = 0 corresponds
to the original clean data. As shown in Table 7, the performance exhibits
a graceful degradation with increasing noise intensity. Under low noise
(a = 0.1), the method is nearly identical to the clean case (ACC: 77.76
vs. 77.78), which demonstrates insensitivity to small perturbations. At
moderate noise (« = 0.3), the accuracy remains competitive at 76.28,
with NMI and F-score declining by less than 4 %, respectively. Even un-
der high noise (¢ = 0.5), the method maintains an ACC of 72.98, with all
metrics showing consistently low variance. These results suggest that our
approach is robust to graded noise corruption, with performance degra-
dation scaling predictably with noise intensity. This property is critical
for real-world applications where data quality may vary.

4.5. Parameter sensitivity

To assess the sensitivity of the proposed algorithm to its four
manually configured parameters, we performed a series of controlled
experiments, each aimed at evaluating the effect of a single parame-
ter in isolation. In each experiment, one parameter was systematically
varied while the remaining three were fixed at the midpoints of their
respective predefined ranges. For example, when examining the impact
of a, the other parameters were held constant, and the number of se-
lected features was adjusted across the set {50, 100, 150,200, 250,300}
to explore performance across different feature dimensionalities. The
corresponding results are visualized in Fig. 5.

The findings indicate that parameters a and p have a relatively minor
influence on clustering performance across various datasets, which sug-
gests that the algorithm demonstrates a degree of insensitivity to their
specific settings. In contrast, # exhibits a more significant impact, with
larger values generally leading to enhanced performance. The influence
of y appears to be dataset-specific. For instance, in image-based datasets
such as outdoor_scene_new, ORL, and handwritten, lower values of y
tend to yield better results. However, for structured datasets like WebKB,
higher values of y are preferable. These observations underscore the im-
portance of parameter sensitivity tuning in optimizing performance in
multi-view learning applications.

4.6. Convergence study

Fig. 6 illustrates the convergence behavior of the proposed
GDFS algorithm. Owing to the multi-block structure inherent in
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Fig. 5. Parameter sensitivity on different datasets.

Algorithm 1, which comprises five interdependent sub-problems, de-
riving a theoretical convergence guarantee remains a challenging
task. Nevertheless, each sub-problem can be independently optimized
to its respective minimum, which contributes to the algorithm’s
overall stability. Empirical evidence across diverse datasets confirms
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that GDFS converges consistently, with a rapid decline in the ob-

jective function observed within the first five iterations, followed

by a steady convergence trend. These findings collectively affirm
the practical convergence efficiency and reliability of the proposed

method.
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Fig. 6. Convergence study on different datasets.

5. Conclusion

In this work, we propose a novel multi-view unsupervised feature
selection framework, termed GDFS, which effectively integrates local
and global graph learning within a unified structure. By jointly model-
ing nonlinear local relationships in a kernel space and global structures
from projected low-dimensional representations, GDFS captures both
fine-grained and holistic data characteristics. Additionally, a graph
discrepancy term and a low-rank tensor constraint are introduced to
enhance inter-view consistency and suppress noise, while a consensus
clustering matrix provides pseudo-label supervision for more robust fea-
ture selection. Although GDFS demonstrates strong performance across
multiple benchmark datasets, it has several limitations: (1) it treats all
views equally, which ignores their varying importance; (2) its com-
putational complexity increases linearly with data size, which hinders
scalability. In future work, we aim to address these issues by introduc-
ing an attention-based view-weighting strategy, and employing anchor
graph techniques to reduce time complexity.
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