
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Multi-view unsupervised feature selection based on graph discrepancy 

learning

Yiwan Xu 

a, b , Xijiong Xie 

a, b,∗ 

iD , Xianliang Jiang 

a, b 

iD , Yujie Xiong 

c

a School of Information Science and Engineering, Ningbo University, Ningbo, 315211, China 

b Key Laboratory of Mobile Network Application Technology of Zhejiang Province, Ningbo University, 315211, Ningbo, China 

c School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China

A R T I C L E I N F O

Communicated by G. Yu

Keywords:

Local and global structure 

Graph discrepancy 

Kernel mapping 

Multi-view learning 

Unsupervised feature selection

A B S T R A C T

In multi-view learning, unsupervised feature selection plays a vital role in reducing dimensionality while pre-

serving discriminative information distributed across diverse data modalities. Despite notable progress, existing 

approaches frequently exhibit two key limitations: they often overlook the complementary benefits of integrating 

global and local structural information, and they inadequately model complex nonlinear relationships or align 

structural representations across views. To address these challenges, we propose a novel framework, termed 

Multi-view unsupervised feature selection based on graph discrepancy learning (GDFS). The proposed method 

jointly constructs global graph structures in a projected low-dimensional space and local graphs in a nonlinear

kernel-induced space, effectively capturing both high-level semantic structures and fine-grained neighborhood 

dependencies. A graph discrepancy term is introduced to explicitly reduce structural discrepancies between global 

and local representations, thus enhancing consistency and robustness. In addition, a low-rank tensor constraint 

is applied to the stack of global graphs to uncover high-order correlations across views. A consensus clustering 

matrix is further learned to provide pseudo-label supervision, which guides the selection of discriminative fea-

tures. Extensive experiments on six benchmark multi-view datasets demonstrate that GDFS consistently surpasses 

state-of-the-art methods in terms of clustering performance, thereby confirming its effectiveness, scalability, and 

generalizability. The code is available at https://github.com/xyw0111/2025-GDFS.

1. Introduction

Multi-view data encapsulates multiple heterogeneous yet comple-

mentary perspectives of the same underlying entity, obtained through 

diverse sensors, feature extraction algorithms, or different observational 

angles. This data paradigm has become increasingly prevalent across a 

wide range of domains. For instance, in image analysis, features such 

as Scale-Invariant Feature Transform (SIFT) [1], Histogram of Oriented 

Gradients (HOG) [2], and Local Binary Patterns (LBP) [3] offer dis-

tinct characterizations of visual content, each capturing different aspects 

of image structure. In text mining, multilingual documents provide se-

mantically varied representations, and in human activity recognition 

[4], modalities such as RGB imagery, depth sensing, and wearable de-

vices contribute diverse streams of behavioral information. Compared 

with single-view datasets, multi-view data often contain richer and 

complementary information, thereby improving the effectiveness of 

downstream learning tasks.

Nonetheless, the high dimensionality typically associated with multi-

view data poses considerable computational and storage challenges. 

From a data perspective [5], the fundamental challenge lies in bal-

ancing complementarity and consistency across views while preserving 

key information. To address these issues, dimensionality reduction tech-

niques are commonly employed, which can be categorized into two 

main approaches: feature extraction [6–8], which maps original fea-

tures into new lower-dimensional representations, and feature selection 

[9,10], which directly identifies salient features by removing redundan-

cies. Among these, feature selection has attracted growing attention 

[11,12] due to its unique advantages: (1) maintaining the semantic 

integrity of original features [13]; (2) offering better interpretability. 

Recent advances in consensus learning [14] and complementary frame-

works [15] have further enhanced feature selection’s ability to handle 

view consistency while preserving interpretability.
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Within this context, multi-view feature selection has emerged as a 

vital approach, which offers both interpretability and robustness in han-

dling the complexity of multi-view data. Depending on the availability 

of supervision, existing methods are typically classified into supervised 

[16,17], semi-supervised [18–20], and unsupervised [21–27] strategies. 

Supervised methods leverage annotated labels to guide the selection 

of discriminative features, while semi-supervised methods benefit from 

both labeled and unlabeled data. In contrast, unsupervised methods 

operate without any form of supervision, relying instead on intrinsic 

structural properties of the data—a particularly challenging scenario, yet 

highly applicable given the scarcity of labeled data in many real-world 

applications.

Despite notable progress, existing unsupervised multi-view feature 

selection techniques face several critical limitations. Many approaches 

emphasize either the preservation of global structure [28] or the mod-

eling of local neighborhood relationships [29], and often neglect the 

synergistic interplay between these two structural perspectives. This 

dichotomy can lead to incomplete exploitation of the rich structural 

information inherent in multi-view data. Furthermore, a substantial 

number of methods rely on linear assumptions, which are insufficient 

for modeling the complex nonlinear relationships commonly encoun-

tered in practical scenarios. To address this, kernel mapping [30] has 

emerged as an effective strategy, as it projects these samples into a high-

dimensional Reproducing Kernel Hilbert Space, thereby enhancing the 

model’s ability to capture nonlinear relationships. An additional yet of-

ten overlooked challenge lies in achieving structural alignment across 

different views. Without explicit modeling of inter-view consistency, se-

lected features may lack coherence, diminishing their utility. To this end, 

we introduce a graph discrepancy term to quantify and minimize the 

inconsistency between local and global structures, thereby promoting 

structural coherence.

In this work, we introduce a novel framework, termed Multi-view 

unsupervised feature selection based on graph discrepancy learning 

(GDFS). The overall architecture is depicted in Fig. 1. For each view, lo-

cal graph structures are constructed in a nonlinear kernel-induced space 

to effectively capture complex neighborhood relationships. In parallel, 

global graph structures are learned from low-dimensional projections,

which enhance both feature discriminability and structural integrity. 

A graph discrepancy term is then introduced to jointly optimize local 

and global representations. To uncover shared higher-order relation-

ships across views, all global graphs are stacked into a third-order 

tensor, and a tensor nuclear norm is applied to extract common la-

tent correlations. Furthermore, a consensus clustering matrix is learned 

to maintain consistency across views and to provide discriminative 

pseudo-supervision for feature selection. Collectively, these components 

constitute a comprehensive and cohesive framework that advances un-

supervised feature selection by integrating local-global graph modeling, 

structural alignment, and multi-view learning.

The core contributions of this study are summarized as follows.

1. We present an integrated framework that concurrently constructs

local and global graph structures to capture the intricate neigh-

borhood relationships and overall distribution, respectively. These 

dual representations are coupled via a graph discrepancy term, 

which effectively enhances structural coherence and model robust-

ness.

2. To better accommodate the nonlinear nature of real-world data,

local graphs are constructed within a kernel-induced space. This 

design allows the model to effectively capture complex nonlinear 

relationships, particularly those characterized by curved decision 

boundaries, which conventional linear graph constructions are 

often unable to represent accurately.

3. An efficient optimization algorithm is developed to solve the pro-

posed objective function, which offers both stable convergence 

and manageable computational complexity. The efficacy and prac-

tical value of the proposed approach are validated through ex-

tensive clustering experiments performed on a broad spectrum of 

benchmark multi-view datasets.

The structure of this paper is outlined as follows. Section 2 provides 

a concise review of methods related to multi-view unsupervised feature 

selection. Section 3 introduces our multi-view unsupervised feature se-

lection approach, and also discusses its optimization, convergence, and

Fig. 1. The overall framework of the proposed method. On the left, multi-view raw features are used to construct local graphs via kernel mapping (top) and global 

graphs via low-dimensional projection (bottom). The local graphs 𝐙 

(𝑚) and global graphs 𝐒 

(𝑚) are jointly aligned through a graph discrepancy term to enhance

structural consistency. All graphs are stacked into a third-order tensor with low-rank regularization to extract cross-view correlations. A consensus clustering matrix 

𝐕 is learned to further unify graph structures and guide unsupervised feature selection.
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computational complexity. Section 4 presents experimental results on 

multiple multi-view datasets. Finally, Section 5 concludes the study.

2. Related work 

2.1. Kernel generation

}𝑁Given a set of data samples {𝐱 drawn from𝑖 𝑖=1   an input space

X ⊆ R 

𝑑 X , kernel methods project these samples into a high-dimensional 

Reproducing Kernel Hilbert  

 Space (RKHS) H ⊆ R 

𝑑H via an implicit fea-

ture mapping 𝜑(⋅). Due to the potentially infinite dimensionality of H, 

this mapping is typically not explicitly defined, and renders direct com-

putation of embedded representations intractable. Fortunately, Mercer’s 

theorem [31] enables the computation of inner products in H through a 

kernel function 𝑘(⋅, ⋅) operating in the original input space X , formulated 

as:

𝐊[𝑖, 𝑗] = 𝜑(𝐱 𝑖) 

⊤ 𝜑(𝐱 𝑗 

) = 𝑘(𝐱 𝑖 

, 𝐱 𝑗 

), (1)

where 𝐊[𝑖, 𝑗] represents the (𝑖, 𝑗)-th entry of the kernel matrix 𝐊. A list 

of commonly used kernel functions is provided in Table 1.

In multi-view learning scenarios, current multi-kernel learning tech-

niques often construct one or more kernels per view, with the primary 

objective of improving performance by designing more effective fu-

sion strategies to aggregate discriminative information across views 

[32–36]. However, these approaches frequently underestimate a critical 

limitation—namely, that the quality of individual kernel often poses a 

bottleneck to overall performance. Although several studies have inves-

tigated optimal parameter selection in kernel functions [37], this topic 

falls outside the scope of our study. Instead, we introduce a novel kernel 

generation paradigm, referred to as Cross-view Multiple Kernels (CMK), 

which retains the form and parameterization of traditional kernel func-

tions while offering a principled and structurally coherent approach to 

kernel construction, specifically tailored to multi-view settings.

2.2. Unsupervised feature selection via low-rank tensor-based graph

learning

In the absence of supervisory information, the inherent distributional 

patterns within data offer a valuable foundation for guiding unsuper-

vised feature selection. Consequently, a wide array of methodologies has 

been developed to identify feature subsets that most effectively unveil 

the underlying structural characteristics of the data [38]. Conventional 

approaches typically employ a two-step procedure: first estimating the 

intrinsic structure using the complete set of input features, and sub-

sequently selecting those features that best preserve this structure. 

However, such strategies are prone to degradation in performance 

when the estimated structure is compromised by noise, redundancy, or 

irrelevant variables.

To address these challenges, recent research has proposed integrat-

ing graph learning and feature selection within a unified optimization 

framework, thereby enabling mutual enhancement between the two 

processes throughout the learning procedure [39]. Building on this foun-

dation, multi-view learning scenarios have inspired the introduction 

of low-rank tensor regularization to better capture high-order relation-

ships across heterogeneous feature spaces. Specifically, by assembling 

the view-specific similarity graphs or selection matrices into a high-order

Table 1 

Representatives of traditional kernel functions.

Kernel type Formulation

Linear 𝛼𝐱 

⊤
𝑖 𝐱 𝑗 

+ 𝑐
Gaussian exp(−‖𝐱 𝑖 

− 𝐱 𝑗 

‖ 

2 ∕2𝜎 

2 )
Polynomial (𝛼𝐱⊤𝑖 𝐱 𝑗 + 𝑐) 

𝑑

Sigmoid tanh(𝛼𝐱⊤𝑖 𝐱 𝑗 + 𝑐)
Cauchy (‖𝐱 𝑖 − 𝐱 𝑗‖ 

2∕𝜎 + 1) 

−1

tensor and imposing a low-rank constraint, these methods are capable 

of capturing both shared and complementary information across views 

[40]. This approach can be mathematically formulated as follows:

min 

,𝐖 𝑣

𝑛
∑ 

𝑖=1

𝑛 

∑ 

𝑗=1

‖

‖

‖

𝐖 

⊤
𝑣𝐗 𝑣[∶,𝑖] − 𝐖 

⊤
𝑣𝐗 𝑣[∶,𝑗]

‖

‖

‖

2
𝑆 

(𝑣)
𝑖𝑗 + Ω(𝐖) + ‖𝐒‖ ⊗

s.t.𝐖 

⊤
𝑣𝐖 𝑣 

= 𝐈,
𝑛 

∑ 

𝑗=1
𝑆 

(𝑣)
𝑖𝑗 = 1, 𝑆(𝑣)

𝑖𝑗 ≥ 0,

𝐒 = Φ(𝐒 

(1) ,𝐒 

(2) ,… ,𝐒 

(𝑉 ) ), 𝑆(𝑣)
𝑖𝑖 = 0.

(2)

𝐒

While such models have shown promising results, they are not 

without limitations. First, their reliance on linear projection matri-

ces 𝐖 𝑣 restricts their ability to model complex and nonlinear feature 

relationships—an essential characteristic of many real-world datasets. 

Second, these methods predominantly emphasize the preservation of 

local structural information, and often neglect global data dependen-

cies which are equally critical for comprehensive and robust feature 

selection.

3. Methodology 

3.1. Preliminary

In this paper, matrices, vectors, and scalars are represented by bold 

uppercase letters, bold lowercase letters, and normal italic letters, re

spectively. 𝑛, 𝑣, and 𝑘 denote the number of samples, the number

of views, and the number of clusters, respectively. I  

 

represents a𝑘  

𝑘 × 𝑘 identity matrix. The data matrix of the 𝑚th view is defined as 

𝐗𝑚 ∈ R𝑑 𝑚  

 

   

×𝑛. Tr(⋅) and diag(⋅) represent the trace operator and di

agonal elements of a matrix, respectively. The Frobenius norm and 

𝑙 2,1-norm are denoted as ‖ ⋅  

 

‖𝐹 

and ‖ ⋅ ‖ 2,1, respectively. Additionally,

third-order tensors are represented by bold calligraphic letters, such as

J ∈ R 1 
 

𝑛
 

×𝑛2  

×𝑛 3 . The t-SVD-based tensor
∑ ∑

 nuclear norm of J is defined as
min(

 

‖J ‖ = 𝑛 3 

‖J (𝑚)
‖ = 𝑛1 2   

 

,𝑛 

∗
 

) ∑𝑛3 
(𝑚

    

 

|S )
 (𝑖, 𝑖)| (𝑚)

, where𝑚=1 𝑓 𝑖 𝑚=1   S⊗ =1 𝑓  is𝑓  ob

-

-

-

tained by the SVD on all front slices of J 𝑓 

. Table 2 summarizes the main 

notations used in this article.

Definition 1. The 𝑙 2,1 

-norm [41] is defined as

‖𝐖‖ 2,1 =
𝑑
∑ 

𝑖=1
‖𝐰 𝑖,∶ 

‖ 2, (3)

which computes the sum of the 𝓁 2 

-norms of all rows in 𝐖. This formu-

lation encourages row-wise sparsity, i.e., entire rows of 𝐖 to become 

zero.

Table 2 

Summary of notations used in this article.

Notations Descriptions

𝐗 

𝑚 ∈ R 

𝑑 𝑚 
×𝑛 Data matrix of the 𝑚th view

𝐖 

𝑚 ∈ R 

𝑑 𝑚×𝑘 Feature weight matrix of the 𝑚th view

𝐒 

𝑚 ∈ R 

𝑛×𝑛 Local similarity matrix of the 𝑚th view

𝐙 

𝑚 ∈ R 

𝑛×𝑛 Global similarity matrix of the 𝑚th view

𝐕 ∈ R 

𝑛×𝑘 The consensus clustering result

J ∈ R 

𝑛×𝑛×𝑣 An auxiliary tensor variable

M ∈ R 

𝑛×𝑛×𝑣 Lagrange multiplier 

𝐈 𝑘 

An 𝑘 × 𝑘 identity matrix 

𝑑 𝑚 

The number of features in the 𝑚th view

𝑢 Penalty factor 

𝑛 The number of instances

𝑘 The number of clusters 

𝑣 The number of views 

𝛼, 𝛽, 𝛾, 𝜌 Balancing parameters
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3.2. The proposed GDFS model 

3.2.1. Joint global and local graph learning

In unsupervised learning tasks such as clustering and representa-

tion learning, a central challenge is the accurate recovery of the global 

structure embedded within high-dimensional data. Traditional methods 

typically rely on the full feature space to infer inter-sample affinities; 

however, the presence of noisy, irrelevant, or redundant features often 

degrades the quality of the constructed similarity graph, and ultimately 

impairs downstream performance.

To address this limitation, recent advances advocate a unified op-

timization framework that simultaneously performs global graph con-

struction and feature selection. This joint modeling paradigm enables 

mutual enhancement between the two components throughout the 

training process. A representative formulation is given by

min
𝐖,𝐒

‖

‖

‖

𝐖 

𝑇𝐗 − 𝐖 

𝑇𝐗𝐒‖‖
‖

2

𝐹 

+ Ω(𝐖), s.t. 𝐒 ∈ C. (4)

where 𝐒 ∈ R 

𝑛×𝑛 denotes a global similarity matrix capturing 

reconstruction-based relationships among samples, and 𝐖 ∈ R 

𝑑×𝑘 serves 

as a feature weighting matrix that facilitates the selection of discrimina-

tive features while preserving the global data structure. The constraint 

set C and the regularizer Ω(𝐖) are designed to promote desired struc-

tural properties, such as sparsity or orthogonality. This formulation 

extends naturally to multi-view learning framework.

min
𝐖 

𝑚 ,𝐒 

𝑚

𝑣
∑

𝑚=1

( 

‖(𝐖 

𝑚 ) 

𝑇 𝐗 

𝑚 − (𝐖 

𝑚) 

𝑇𝐗 

𝑚𝐒 

𝑚
‖

2
𝐹 + 𝛾‖𝐖 

𝑚
‖ 2,1

)

s.t. (𝐖 

𝑚) 

𝑇 𝐗 

𝑚(𝐗 

𝑚 ) 

𝑇𝐖 

𝑚 = 𝐼 𝑘.

(5)

From a local perspective, preserving fine-grained neighborhood 

structures is equally essential. Classical graph construction methods, 

such as 𝑘-nearest neighbors, often rely on fixed hyperparameters and 

Euclidean distances, which make them unsuitable for complex data 

geometries and sensitive to noise. To address these issues, adaptive 

neighborhood learning has been introduced.

min
𝐳 𝑖

𝑛
∑

𝑗=1
‖𝐱 𝑖 − 𝐱 𝑗‖ 

2𝑧 𝑖𝑗 s.t. 𝐳 

𝑇
𝑖 𝟏 = 1, (6)

where 𝑧 𝑖𝑗 

denotes the similarity between sample 𝑖 and sample 𝑗. The 

term ‖𝐱 𝑖−𝐱 𝑗‖ 

2 measures the Euclidean distance between them. A smaller 

distance leads to a larger value of 𝑧 𝑖𝑗 , which encourages the model to 

assign higher similarity scores to truly relevant neighbors. By generaliz-

ing single-view subspace learning to multi-view cases, Eq. (6) is further 

expressed in the following matrix form.

min 

𝐳 

(𝑚)
𝑖

𝑣
∑

𝑚=1

𝑛
∑

𝑖,𝑗=1
‖𝐱𝑚𝑖 − 𝐱 

𝑚
𝑗 ‖

2 𝑧 

𝑚
𝑖𝑗 s.t. (𝐳𝑚𝑖 ) 

𝑇 𝟏 = 1. (7)

Moreover, local graph learning focuses on preserving fine-grained 

geometric relationships among neighboring data points. Real-world 

datasets commonly exhibit complex nonlinear patterns at the local level, 

which are difficult to model accurately in the original space. Kernel map-

ping helps to linearize these nonlinear local structures by projecting the 

data into a high-dimensional space, where local neighborhood relation-

ships become more distinguishable. As such, applying kernel mapping 

in local graph learning facilitates the construction of more expressive 

and discriminative neighborhood graphs, thereby enhancing the effec-

tiveness of feature selection. Kernel extension of Eq. (7) can be obtained 

as

min 

𝐙 

𝑚
𝜌 

𝑣
∑

𝑚=1

𝑛
∑

𝑖,𝑗=1
‖𝜙 

𝑚(𝑋 

𝑚
𝑖 ) − 𝜙 

𝑚(𝑋𝑚
𝑗 )‖

2
2𝑍 

𝑚
𝑖𝑗

s.t.𝑑𝑖𝑎𝑔(𝐙 

𝑚) = 0, (𝐳𝑚𝑖 ) 

𝑇 𝟏 = 1,

(8)

where the function 𝜙 

𝑚 (⋅) represents nonlinear mapping. Conventional 

graph learning often focuses on either global or local structures, which

limits its ability to model complex multi-view data. We propose a uni-

fied framework that integrates global graph learning with kernel-based 

adaptive neighborhood modeling to capture multi-level structures.

Specifically, global graph learning focuses on modeling the overall 

data distribution and typically constructs the similarity graph directly 

in the original feature space. This approach is computationally effi-

cient and robust, which makes kernel mapping generally unnecessary. 

In contrast, local graph learning emphasizes fine-grained neighborhood 

structures. By projecting data into a high-dimensional space through 

kernel mapping, it becomes possible to uncover latent nonlinear re-

lationships, thereby enhancing the expressiveness and discriminative 

power of the learned adjacency graph. Our method can be formulated 

as

min
𝐙 

𝑚 ,𝐖 

𝑚 ,𝐒 

𝑚

𝑣
∑

𝑚=1

( 

‖(𝐖 

𝑚 ) 

𝑇𝐗 

𝑚 − (𝐖 

𝑚 ) 

𝑇𝐗 

𝑚 𝐒 

𝑚 

‖

2
𝐹 + 𝛾‖𝐖 

𝑚
‖ 2,1

+ 𝜌 

𝑛
∑

𝑖,𝑗=1
‖𝜙 

𝑚 (𝑋𝑚
𝑖 ) − 𝜙 

𝑚(𝑋𝑚
𝑗 )‖ 

2
2𝑍 

𝑚
𝑖𝑗

)

s.t. (𝐖 

𝑚) 

𝑇𝐗 

𝑚 (𝐗 

𝑚 ) 

𝑇 𝐖 

𝑚 = 𝐼 𝑘, 

diag(𝐙 

𝑚) = 0, (𝐳𝑚𝑖 ) 

𝑇 𝟏 = 1,𝐙 

𝑚 ≥ 0.

(9)

To fully exploit the complementary strengths of global and local 

graph structures, we introduce a graph structure alignment mechanism. 

Specifically, we adopt a Frobenius norm-based graph discrepancy term 

that encourages the consistency between the global and local graphs dur-

ing optimization. Even when these graphs are constructed from different 

perspectives or feature spaces, such as the projected space and a kernel-

induced space, this mechanism ensures structural alignment, thereby 

enhancing the discriminative power and coherence of the learned graph.

Our design is inspired by the TAML framework proposed in [42], 

the term ‖X − Y‖

2
𝐹 is employed to enforce consistency between the co-

efficient tensor X , which captures global self-representation structures, 

and the similarity tensor Y , which models local geometric relationships 

via adaptive graphs. Although X and Y originate from distinct model-

ing approaches, they fundamentally encode pairwise sample affinities 

and share a common semantic structure based on sample indices, which 

makes direct alignment meaningful. Furthermore, the Frobenius norm 

is computationally efficient and differentiable, which makes it tractable 

during optimization.

The corresponding formulation is presented as follows. 

min
𝐙 

𝑚 ,𝐖 

𝑚 ,𝐒 

𝑚

𝑣
∑

𝑚=1

( 

‖(𝐖 

𝑚 ) 

𝑇𝐗 

𝑚 − (𝐖 

𝑚 ) 

𝑇 𝐗𝑚𝐒𝑚‖ 

2
𝐹 + 𝛾‖𝐖 

𝑚 

‖ 2,1

+ 𝜌 

𝑛
∑

𝑖,𝑗=1
‖𝜙 

𝑚 (𝑋𝑚
𝑖 ) − 𝜙 

𝑚(𝑋𝑚
𝑗 )‖ 

2
2𝑍 

𝑚
𝑖𝑗

)

+ 

𝛽
2 

‖S − X‖

2
𝐹

s.t. (𝐖 

𝑚) 

𝑇𝐗 

𝑚 (𝐗 

𝑚 ) 

𝑇 𝐖 

𝑚 = 𝐼 𝑘, X = Φ(𝐙 

(1) ,𝐙 

(2) ,… ,𝐙 

(𝑚) ),

diag(𝐙 

𝑚) = 0, (𝐳𝑚𝑖 ) 

𝑇 𝟏 = 1,𝐙 

𝑚 ≥ 0,

S = Φ(𝐒 

(1) ,𝐒 

(2),… ,𝐒 

(𝑣) ),

(10)

where the function Φ(⋅) stacks multiple view-specific representations

𝐙 

(𝑚) or 𝐒 

(𝑚) into a third-order tensor 𝐙 or 𝐒.

3.2.2. Low-rank constraint regularization

Although conventional regularization strategies effectively constrain 

the representation within each individual view, they often fall short in 

capturing the intrinsic inter-view correlations and high-order dependen-

cies that are essential to multi-view learning. To address this limitation, 

we leverage recent advances in low-rank tensor learning [43–46] and in-

corporate a tensor nuclear norm regularization based on tensor singular 

value decomposition (t-SVD). This constraint is applied to the subspace 

similarity representations, which facilitates the extraction of comple-

mentary information embedded in the high-order interactions across
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multiple views. Specifically, the proposed model is formulated as

min ‖S‖ ⊗ 

s.t. S = Φ(𝐒 

(1) ,𝐒 

(2) ,… ,𝐒 

(𝑣)),
(11)

where the similarity matrices from each view, 𝐒 

1 ,𝐒 

2 ,… ,𝐒 

𝑣 are aggre-

gated into a third-order tensor 𝐒 ∈ R 

𝑛×𝑛×𝑣 . The t-SVD-based tensor 

nuclear norm ‖S‖ ⊗ 

imposes a low-rank structure on 𝐒, which encourages 

compactness while preserving latent structural dependencies shared 

across different views.

Remark 1. Fig. 2 illustrates the computational pipeline of the t-SVD-

based tensor low-rank approximation used in our model. Given multiple 

view-specific self-representation matrices 𝑆 

(1) ,… , 𝑆 

(𝑉 ) , they are first 

stacked into a third-order tensor S ∈ R 

𝑛×𝑛×𝑉 . This tensor is then ro-

tated (or transformed) into 

̃ S for better alignment along the third (view)

mode.

Next, the t-SVD (tensor singular value decomposition) is applied:

S̃ = U ∗ C ∗ V⊤,

where U and V are orthogonal tensors, and C is an f-diagonal core tensor 

containing the tubal singular values.

To promote low-rank structure and suppress noise, a tubal-shrinkage 

operator is applied to C in the Fourier domain, which yields a shrunk 

core tensor ̃ C. The updated tensor is reconstructed via the t-product:

S̃ ← U ∗ C̃ ∗ V⊤.

Finally, the inverse rotation transforms 

̃ S back to the original ten-

sor space for downstream clustering or selection. This process enables 

effective multi-view structural modeling with shared low-rank priors.

3.2.3. Consensus clustering

In multi-view learning, each view offers a distinct yet complemen-

tary representation of the underlying data. To effectively integrate these 

heterogeneous sources, consensus clustering aims to identify a unified 

clustering assignment that reflects the shared structural patterns across 

all views. This is accomplished by learning a consensus indicator matrix 

that approximates the aggregated similarity matrices derived from all 

views. Formally, the consensus clustering objective is defined as

min
𝐒 

𝑚

‖

‖

‖

‖

‖

𝑣
∑

𝑚=1
𝐒 

𝑚 − 𝐕𝐕 

⊤
‖

‖

‖

‖

‖

2

𝐹

s.t. 𝐕 

⊤ 𝐕 = 𝐈 𝑘 

,

(12)

where 𝐕 ∈ R 

𝑛×𝑘 denotes the consensus cluster assignment matrix, and 𝑘 

is the predefined number of clusters.

Fig. 2. The Flowchart of t-SVD-MSC. 𝐒 

(1) ,… ,𝐒 

(𝑉 ) , into a tensor S, and then

rotates to 

̃ S; the ̃ S will be updated by using t-SVD based tensor multi-rank

minimization.

3.2.4. Overall objective function

By integrating the above three components, we obtain the final 

objective function.

min 

𝐙 

𝑚 ,𝐖 

𝑚 ,𝐒 

𝑚 ,𝐕 

𝛼‖S‖ ⊗ + 

2 

‖S − X‖

2
𝐹

+ 

𝑣
∑

𝑚=1

( 

‖(𝐖 

𝑚 ) 

𝑇 𝐗 

𝑚 − (𝐖 

𝑚 ) 

𝑇𝐗 

𝑚 𝐒 

𝑚
‖

2
𝐹 + 𝛾‖𝐖 

𝑚
‖ 2,1

+ 𝜌
𝑛
∑

𝑖,𝑗=1
‖𝜙 

𝑚(𝑋𝑚
𝑖 ) − 𝜙 

𝑚(𝑋𝑚
𝑗 )‖

2
2𝑍 

𝑚
𝑖𝑗

)

+
‖

‖

‖

‖

‖

𝑣
∑

𝑚=1
𝐒 

𝑚 − 𝐕𝐕 

𝑇 

‖

‖

‖

‖

‖

2

𝐹

s.t. (𝐖 

𝑚) 

𝑇𝐗 

𝑚(𝐗 

𝑚 ) 

𝑇𝐖 

𝑚 = 𝐼 𝑘 

,𝐕 

𝑇 𝐕 = 𝐼 𝑘 

, 

X = Φ(𝐙 

(1) ,𝐙 

(2) ,… ,𝐙 

(𝑚)), diag(𝐙 

𝑚) = 0,

(𝐳𝑚𝑖 ) 

𝑇 𝟏 = 1,𝐙 

𝑚 ≥ 0, 

S = Φ(𝐒 

(1) ,𝐒 

(2) ,… ,𝐒 

(𝑣) ).

(13)

𝛽

3.3. Optimization

In the presence of multiple interdependent variables, obtaining a 

closed-form solution to the constrained optimization problem in Eq. (13) 

becomes analytically intractable. To address this challenge, we refor-

mulate the original objective into a sequence of more manageable 

sub-problems and solve them iteratively using the Alternating Direction 

Method of Multipliers (ALM-ADM) within the Augmented Lagrangian 

framework.

To facilitate the decoupling of the objective function and enable 

efficient optimization, we introduce an auxiliary tensor variable J ∈ 

R 

𝑛×𝑛×𝑣 . The reformulated objective is expressed as follows.

min 

𝐙 

𝑚 ,𝐖 

𝑚 ,𝐒 

𝑚 ,𝐕 

𝛼‖J ‖ ⊗ + 

𝛽
2 

‖S − X‖

2
𝐹

+ 

𝑣
∑

𝑚=1

( 

‖(𝐖 

𝑚 ) 

𝑇 𝐗 

𝑚 − (𝐖 

𝑚 ) 

𝑇𝐗 

𝑚 𝐒 

𝑚
‖

2
𝐹 + 𝛾‖𝐖 

𝑚
‖ 2,1

+ 𝜌
𝑛
∑

𝑖,𝑗=1
‖𝜙 

𝑚(𝑋𝑚
𝑖 ) − 𝜙 

𝑚(𝑋𝑚
𝑗 )‖

2
2𝑍 

𝑚
𝑖𝑗

)

+ 

‖

‖

‖

‖

‖

𝑣
∑

𝑚=1
𝐒 

𝑚 − 𝐕𝐕 

𝑇
‖

‖

‖

‖

‖

2

𝐹

s.t. (𝐖 

𝑚) 

𝑇𝐗 

𝑚(𝐗 

𝑚 ) 

𝑇𝐖 

𝑚 = 𝐼 𝑘 

,𝐕 

𝑇 𝐕 = 𝐼 𝑘 

, 

X = Φ(𝐙 

(1) ,𝐙 

(2) ,… ,𝐙 

(𝑚)), diag(𝐙 

𝑚) = 0,

(𝐳𝑚𝑖 ) 

𝑇 𝟏 = 1,𝐙 

𝑚 ≥ 0, 

S = Φ(𝐒 

(1) ,𝐒 

(2),… ,𝐒 

(𝑣) ),J = S .

(14)

The corresponding augmented Lagrangian function is then formulated 

as

min 

𝐙 

𝑚 ,𝐖 

𝑚 ,𝐒 

𝑚 ,𝐕 

𝛼‖J ‖ ⊗ + 

𝑢
2 

‖

‖

‖ 

‖

J − 

( 

S + 

M
𝑢 

)

‖

‖

‖

‖

2

𝐹

+ 

𝑣
∑

𝑚=1

( 

‖(𝐖 

𝑚 ) 

𝑇 𝐗 

𝑚 − (𝐖 

𝑚 ) 

𝑇𝐗 

𝑚 𝐒 

𝑚
‖

2
𝐹 + 𝛾‖𝐖 

𝑚
‖ 2,1

+ 𝜌
𝑛
∑

𝑖,𝑗=1
‖𝜙 

𝑚(𝑋𝑚
𝑖 ) − 𝜙 

𝑚(𝑋𝑚
𝑗 )‖

2
2𝑍 

𝑚
𝑖𝑗

)

+
𝛽
2
‖S − X‖

2
𝐹 +

‖

‖

‖

‖

‖

𝑣
∑

𝑚=1
𝐒 

𝑚 − 𝐕𝐕 

𝑇 

‖

‖

‖

‖

‖

2

𝐹

s.t. (𝐖 

𝑚) 

𝑇𝐗 

𝑚(𝐗 

𝑚 ) 

𝑇𝐖 

𝑚 = 𝐼 𝑘 

,𝐕 

𝑇 𝐕 = 𝐼 𝑘 

, 

X = Φ(𝐙 

(1) ,𝐙 

(2) ,… ,𝐙 

(𝑚)), diag(𝐙 

𝑚) = 0,

(𝐳𝑚𝑖 ) 

𝑇 𝟏 = 1,𝐙 

𝑚 ≥ 0, 

S = Φ(𝐒 

(1) ,𝐒 

(2),… ,𝐒 

(𝑣) )

(15)

Neurocomputing 656 (2025) 131487 

5 



Y. Xu, X. Xie, X. Jiang et al.

where M ∈ R 

𝑛×𝑛×𝑣 denotes the Lagrange multiplier tensor and 𝑢 is a 

positive penalty parameter. Following the the alternative minimization 

strategy, we decompose the problem in Eq. (15) into a set of sub-

problems, each of which optimizes single variable while keeping the 

others fixed. The complete optimization procedure is detailed in the 

subsequent sections. 

1) 𝐙 

𝑚-Subproblem: When all other variables are held constant, the

subproblem with respect to 𝐙 

𝑚 is expressed as

min
𝐙 

𝑚

𝛽
2 

‖S − X‖

2
𝐹 + 𝜌

𝑛
∑

𝑖,𝑗=1
‖𝜙 

𝑚 (𝑋 

𝑚
𝑖 ) − 𝜙 

𝑚(𝑋 

𝑚
𝑗 )‖

2
2𝑍 

𝑚
𝑖𝑗

s.t. X = Φ(𝐙 

(1) ,𝐙 

(2),… ,𝐙 

(𝑚) ), diag(𝐙 

𝑚) = 0,

(𝐳𝑚𝑖 ) 

𝑇 𝟏 = 1,𝐙 

𝑚 ≥ 0.

(16)

2Let 𝑑𝑥 = ‖𝐱𝑖 − 𝐱 ‖𝑗 = 𝑥𝑇 𝑥𝑖 + 𝑥𝑇 𝑥𝑗 − 2𝑥𝑇 

 𝑖𝑗       𝑖    

 𝑗   

 𝑖 

𝑥𝑗 denote the squared 

Euclidean distance between samples 𝑥 𝑖 

and 𝑥 𝑗 

in the original feature 

space. This pairwise distance can be compactly represented in matrix 

form as 𝐃𝑥 

 =  

 Diag(𝐗𝐗 

𝑇 )𝟏𝟏 

𝑇 + 𝟏𝟏𝑇 Diag(𝐗𝐗𝑇
 ) −  

 2𝐗𝐗  

 

𝑇 , where Diag(𝐗𝐗 

𝑇 )
denotes a diagonal matrix containing the diagonal elements of the Gram 

matrix 𝐗𝐗 

𝑇 [47]. Extending this formulation to the reproducing kernel 

Hilbert space (RKHS), the pairwise distance between samples in the 𝑚-th 

view is 

𝑥defined  

 as (𝑑 

𝑚) = ‖𝜙 

𝑚(𝑋 

𝑚) − 𝜙 

𝑚( ‖𝑖 𝑋𝑚) 2
𝑖𝑗 𝑗  = (𝜙𝑚 

 (𝑥𝑚))𝑇 

𝑖  𝜙𝑚 

 (𝑥𝑚)𝑖  + 

(𝜙𝑚 

 (𝑥𝑚))𝑇 𝜙𝑚
 (𝑥𝑚) − 2(𝑗 𝑗  𝜙  

 

𝑚(𝑥𝑚))𝑇 𝜙 

𝑚(𝑥𝑚), where 𝜙 

𝑚 (.) denotes the implicit𝑖 𝑗
nonlinear mapping associated with the kernel function of the view. Let 

𝐾 (𝑚) = 𝜙(𝑋(𝑚)  

 )𝑇   𝜙(𝑋 

(𝑚)) denote the corresponding kernel matrix. The

resulting distance matrix in RKHS is then given by 

(𝐃 

𝑚) 

𝑥 = Diag(𝐊 

𝑚 )𝟏𝟏 

𝑇 + 𝟏𝟏 

𝑇 Diag(𝐊 

𝑚 ) − 2𝐊 

𝑚 . (17)

−1Given that Φ( )(X) = 𝐙(
 

𝑚) and Φ−1 

𝑚  (𝑚)(S) = 𝐒 

(𝑚) , Eq. (16) can be

equivalently reformulated in a trace-based representation as follows:

min 

𝐙 

𝑚

𝛽
2 

‖𝐒 

𝑚 − 𝐙 

𝑚
‖

2
𝐹 + 𝜌 Tr((𝐙 

𝑚) 

𝑇 (𝐃 

𝑚) 

𝑥 )

s.t. diag(𝐙 

𝑚) = 0, (𝐳𝑚𝑖 ) 

𝑇 𝟏 = 1,𝐙 

𝑚 ≥ 0. 

(18)

To derive the analytical solution to the optimization problem defined 

in Eq. (18), we set the derivative with respect to 𝐙 

𝑚 to zero, which yields

𝐙 

𝑚 = 𝐒 

𝑚 − 

𝜌𝐃 

𝑚

𝛽 

. (19)

2) 𝐖 

𝑚-Subproblem: By omitting irrelevant components, the subprob-

lem corresponding to the projection matrix 𝐖 

𝑚 for the view can be

reformulated as

min
𝐖 

𝑚
‖(𝐖 

𝑚) 

𝑇𝐗 

𝑚 − (𝐖 

𝑚) 

𝑇𝐗 

𝑚𝐒 

𝑚
‖

2
𝐹 + 𝛾‖𝐖 

𝑚
‖ 2,1

s.t. (𝐖 

𝑚) 

𝑇 𝐗 

𝑚(𝐗 

𝑚 ) 

𝑇𝐖 

𝑚 = 𝐼 𝑘.
(20)

  

min
𝐕

Tr 

[ 

𝐕 

⊤

( 

𝐈 𝑛 

− 2
𝑣
∑

𝑚=1
(𝐒 

𝑚) 

𝑇

) 

𝐕 

]

s.t. 𝐕 

𝑇 𝐕 = 𝐈 𝑘. 

(28)

To address the non-smooth nature of the 𝑙 2,1 

regularization, we in-

corporate a diagonal weighting matrix 𝐃 𝑚 

, whose diagonal elements are

defined as

𝐃 𝑚[𝑖,𝑖] = 

1

max 

( 

2 ‖‖
‖

𝐖 

𝑚
𝑖
‖ 

‖ 

‖2
, 𝜖 

) , (21)

to prevent numerical instability caused by the singularity condition
‖

 

‖

 𝐖𝑚  

 

‖

 co𝑖 ‖ = 0, a small positive nstant 𝜖
‖ ‖2

 is introduced as a regularization

term. By defining 𝐔 

𝑚 = (𝐈  

 

𝑚 − 𝐒 

𝑚) (𝐈 

𝑚 − 𝐒 

𝑚 )⊤ and incorporating Eq. (21),

the subproblem for optimizing 𝐖 

𝑚 can be reformulated as follows 

min 

𝐖 

𝑚
Tr 

[ 

(𝐖 

𝑚 ) 

𝑇 

(

𝐗 

𝑚𝐔 

𝑚(𝐗 

𝑚 ) 

𝑇 + 𝛾𝐃 𝑚

) 

𝐖 

𝑚 

]

s.t. (𝐖 

𝑚) 

𝑇𝐗 

𝑚(𝐗 

𝑚 ) 

𝑇𝐖 

𝑚 = 𝐼 𝑘. 

(22)

The optimal 𝐖 

𝑚 can be obtained by solving the following generalized

eigen-problem 

( 

𝐗 

𝑚 𝐔 

𝑚 (𝐗 

𝑚) 

𝑇 + 𝛾𝐃 

𝑚 

) 

𝐖 

𝑚 = Λ 

𝑚 𝐗 

𝑚 (𝐗 

𝑚) 

𝑇 𝐖 

𝑚, (23) 

where Λ 

𝑚 is a diagonal matrix whose entries correspond to the asso-

ciated eigenvalues. It should be noted, Eq. (23) 

𝑇requires 𝐗𝑚 

 (𝐗 

𝑚 )  

 is 

non-singular.
(

 Furthermore,
)

 the computational complexity of this solu

  𝑂
 

 𝑑 

3 3tion is  + 𝑛𝑑
 

 

 , which renders it inefficient for high-dimensional 

data. To circumvent these challenges, we adopt the method proposed

-

in [48], which approximates the optimal 𝐖 

𝑚 by solving the following

problem

min
𝐖 

𝑚
‖𝐘 

𝑚 − (𝐗 

𝑚) 

𝑇𝐇 

𝑚
‖

2
𝐹 + 𝛾‖𝐖 

𝑚
‖ 2,1 

, (24) 

where 𝐘𝑚
 consists of the eigenvectors associated with the 𝑘 small

est eigenvalues derived from the spectral  

 decomposition 𝐔𝑚
 𝐘 

𝑚 =
Λ 

𝑚𝐘  

 

𝑚. Using the diagonal matrix defined in 

-

Eq. (21) and the Iterative

Reweighted Least-Squares (IRLS) [49] algorithm, the optimal 𝐖 

𝑚 can

be obtained by

𝐖 

𝑚 = 

( 

𝐗 

𝑚 (𝐗 

𝑚) 

𝑇 + 𝛾𝐃 

𝑚 

) −1 

𝐗 

𝑚 𝐘 

𝑚 . (25)

𝐒𝑚    Φ 

−1 (J ) = 𝐉( 𝑚) Φ−1
 (S) = 𝐒( 𝑚)3) -Subproblem: We define , and(𝑚) (𝑚)  

Φ−1
 (M (
(𝑚) ) = 𝐌 

𝑚) . With all other variables fixed, the optimization 

subproblem  

 concerning the affinity matrix 𝐒 

𝑚 for the 𝑚-th view is 

formulated as follows:

min
𝐒 

𝑚

𝑢
2
‖

‖

‖ 

‖ 

𝐉𝑚 − 

( 

𝐒 

𝑚 + 

𝐌 

𝑚

𝑢 

) 

‖

‖

‖

‖

2

𝐹
+ 

𝛽
2
‖𝐒 

𝑚 − 𝐙 

𝑚 

‖

2
𝐹

+ ‖(𝐖 

𝑚) 

𝑇𝐗 

𝑚 − (𝐖 

𝑚 ) 

𝑇𝐗𝑚𝐒𝑚‖2𝐹

+
‖

‖

‖

‖

‖

𝑣
∑

𝑚=1
𝐒 

𝑚 − 𝐕𝐕 

𝑇
‖

‖

‖

‖

‖

2

𝐹

.

(26)

To derive a closed-form solution, we introduce the notation 𝐐 

𝑚 =
(𝐗 

𝑚 )𝑇 

 𝐖𝑚
 (𝐖𝑚

 ) 

𝑇𝐗 

𝑚 . By setting the gradient of the objective in Eq. (26)

with respect to 𝐒 

𝑚 to zero, we obtain the following analytical expression:

𝐒 

𝑚 = (2𝐐 

𝑚 + (2 + 𝑢 + 𝛽)𝐼 𝑛) 

−1

( 

2 

( 

𝐐 

𝑚 + 𝐕𝐕 

𝑇 −
𝑉
∑

𝑣≠𝑚
𝐒 

𝑣 

)

+ 𝛽𝐙 

𝑚 − 𝑢𝐉 

𝑚 − 𝐌 

𝑚 

) 

.

(27)

4) 𝐕-Subproblem: By means of elementary algebraic manipulations, 

the optimization subproblem with respect to 𝑉 can be reformulated as

The optimal solution for 𝑉 is obtained efficiently through SVD, which 

guarantees an orthonormal basis satisfying the orthogonality constraint. 

5) J -Subproblem: By excluding terms that do not affect the cur-

rent optimization, the subproblem for the auxiliary tensor variable J 

simplifies to

min 

J
𝛼‖J ‖ ⊗ + 

𝑢
2 

‖

‖

‖ 

‖

J − 

( 

S + 

M
𝑢 

)

‖

‖

‖

‖

2

𝐹
(29)

Letting X = S + 

M
𝑢 , Eq. (29) can be efficiently addressed by applying

Theorem 1 [50], which states:
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Theorem 1. Consider third-order tensors J ,X ∈ R𝑛 1 

𝑛 2 𝑛 

 3 

          and a positive 

scalar 𝛼 > 0. The problem

× ×

min
J

𝛼‖J ‖ ⊗ + 1
2 

‖J − X‖

2
𝐹 (30)

admits a closed-form solution via the tensor tubal-shrinkage operator given 

by

J = 𝐶𝑁3𝜏 (X) = U ∗ 𝐶 𝑁3𝜏 

(O) ∗ V 

𝑇 (31)

where X = U ∗ O ∗ V𝑇 and 𝐶 (O) = O ∗ Y . Here, Y𝑁
 

3𝜏 ∈   

   

                  

1 3
 

R 

𝑛 ×𝑛2×𝑛 is an

𝑓 -diagonal tensor, with its diagonal elements of Y is defined as

Y 𝑓 (𝑖, 𝑖, 𝑗) = (1 − (𝑁 3𝜏∕O(𝑖, 𝑖, 𝑗))) +. (32)

The principal stages of the proposed method’s optimization process 

are delineated in Algorithm 1.

Algorithm 1 GDFS.[51].

1: Input: Data matrix 𝐗 𝑚 

and parameters 𝛼, 𝛽, 𝛾, 𝜌. 

2: Initialize: 𝐒 𝑚 

by WPKN algorithm [51], 𝐖𝑚 = rand(𝑑 𝑚, 𝑘), 𝐙 

 

=
rand(𝑛, 𝑛), 𝐕 = rand(𝑛, 𝑘).

3: repeat 

4: Update 𝐙 𝑚 

by Eq. (19); 

5: Update 𝐖 𝑚 

by Eq. (25); 

6: Update 𝐒 𝑚 

by Eq. (27); 

7: Update 𝐕 by Eq. (28); 

8: Update J by Eq. (29);

9: until 

obj 

(𝑡−1)−obj 

(𝑡)

obj 

(𝑡) < 𝑒𝑝𝑠;
10: Output: Feature weight matrix 𝐖 𝑚 

. 

11: Feature selection: Arrange all features of the multi-view data in
‖ ‖

descending order according to ‖

 

 ‖𝐖
‖

𝑚[∶,𝑖]
‖2

 and select the 𝑘 top-ranked

ones.

3.4. Analysis

Convergence: Given that Algorithm 1 contains multiple iterative up-

dates, it is important to discuss its convergence behavior. Theoretical 

results have shown that the Alternating Direction Method (ADM) con-

verges under certain conditions when only two variables are updated 

alternately [52]. However, when the number of variables increases to 𝑁 

(𝑁 ≥ 3), proving convergence becomes significantly more challenging 

[53]. In our case, the algorithm simultaneously updates several vari-

ables, which include 𝐙 

𝑚 , 𝐖 

𝑚, 𝐒𝑚 , 𝐕, and J , which complicates the

derivation of strict theoretical guarantees.

Nevertheless, GDFS mitigates the risk of reinforcing noisy or subop-

timal clustering partitions through a joint optimization framework that 

ensures mutual enhancement between the consensus clustering matrix 

𝐕 and feature selection. Specifically, the alternating optimization strat-

egy guarantees that each update of 𝐕 is conditioned on the most recent 

feature selection result, and vice versa, which ensures progressive re-

finement toward a more robust consensus. Additionally, the imposed 

low-rank constraint on the global graph tensor J helps filter out cross-

view inconsistencies, which in turn stabilizes the pseudo-labels and 

improves convergence behavior.

Moreover, each subproblem in our framework has an optimal solu-

tion, which ensures the reduction of the objective function and further 

improves the overall performance. Empirically, as shown in Section 4.6, 

our algorithm consistently converges within a few iterations on multiple 

real-world datasets.

Complexity: The computational burden of the method is primarily 

dictated by the iterative updates of these five variables. The update of 

𝐙 

𝑚 requires matrix inversion, leading to a complexity of 𝑜(𝑛3 

 ). Updating 

𝐖 

𝑚 involves solving an eigenvalue decomposition combined with sparse 

feature 

2 3selection,  

 incurring a complexity of 𝑂(𝑘𝑛  

 + 𝑑𝑚 ). Similarly, 𝐒𝑚 

3demands matrix inversion, also resulting in 𝑂(𝑛  

 ) complexity. SVD for 

updating 𝐕 contributes 𝑂(𝑘𝑛 

2 ) complexity. The update of J requires 3D 

Fast Fourier Transforms (FFT) and inverse FFTs on an 𝑛 × 𝑣 × 𝑛 ten

sor, coupled with 𝑛 SVD computations on 𝑛 × 𝑣 matrices within the 

Fourier domain, which culminates  

 in a complexity of 𝑂(2𝑛2 𝑣 log(𝑛)). 

By aggregating
∑

 across all views, the total per-iteration complexity is 

𝑂(𝑣𝑛 

3 +  

 

𝑣
𝑚=1 𝑑 

3 +𝑚  2𝑛 

2𝑣 log(𝑛)).

-

Discussion: GDFS embodies several notable advantages. By integrat-

ing both local and global graph structures, it captures overall distri-

bution and the neighborhood information of data, thereby facilitating 

richer and more nuanced representations of sample interrelationships. 

The adoption of kernel mappings enables the exploration of nonlinear 

local structures, while global graph constraints preserve structural con-

sistency across different views. The introduction of a graph discrepancy 

term effectively aligns heterogeneous graphs, which fosters a robust and 

unified feature selection mechanism. Additionally, the imposition of a 

low-rank tensor constraint on the stacked global graphs enhances cross-

view correlation modeling, which is particularly advantageous when 

handling heterogeneous data sources. To the best of our knowledge, 

this method represents one of the first attempts to synergize graph dis-

crepancy learning with consensus pseudo-label guidance in multi-view 

unsupervised feature selection.

4. Experiments 

4.1. Datasets and compared methods

In this section, we assess the efficacy of the proposed GDFS method 

across a suite of real-world multi-view datasets. Detailed characteristics 

of these datasets are summarized in Table 3.

To comprehensively evaluate GDFS, we carried out extensive com-

parative experiments with both classical and state-of-the-art multi-view 

feature selection algorithms. A brief overview of these competing ap-

proaches is provided below. In addition, to further verify the effec-

tiveness of our method in capturing cross-view correlations, we also 

include SLNMF (Soft-label guided Non-negative Matrix Factorization for 

Unsupervised Feature Selection) [54], a recent single-view feature se-

lection method. Since SLNMF is not designed for multi-view data, we 

follow a common practice of concatenating all views before applying 

feature selection. The performance is evaluated on the same datasets as 

our method to ensure fairness.

(1) ASVW [55] first learns an underlying consensus graph and then

utilizes this consensus graph to ensure that the transformed data 

preserves local structures.

(2) CGMV-FS [15] employs non-negative matrix factorization along-

side consensus learning to extract informative features spanning 

multiple views.

(3) CRV-DCL [56] maps the original data into a shared label space, de-

composed into consensus and diversity components, to effectively 

identify discriminative features.

(4) TLR [40] integrates multiple graphs into a tensor-based frame-

work regulated by low-rank constraints, which capture high-order 

inter-view dependencies.

Table 3 

Details of datasets.

Datasets Class View Samples Features

Outdoor Scene 8 4 2688 512,432,256,48

ORL 40 3 400 4096,3304,6750

handwritten 10 6 2000 76,216,64,240,47,6

3Sources 6 3 169 3560,3631,3068

MSRCV1 7 5 210 24,576,512,254,256

Yale 15 3 165 4096,3304,6750

WebKB 4 3 203 1703,230,230
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Table 4 

Clustering performance on different datasets.

Dataset Metric ASVW CGMV-FS CRV-DCL TLR CCSFS CDMvFS PTFS SLNMF GDFS

Outdoor Scene ACC 47.22 ± 1.47 26.61 ± 0.83 61.71 ± 3.64 44.83 ± 2.94 61.45 ± 3.56 62.60 ± 4.38 62.53 ± 4.26 47.52 ± 2.32 65.79 ± 3.20

NMI 39.91 ± 1.17 11.74 ± 0.46 49.14 ± 0.43 38.11 ± 1.12 51.88 ± 1.91 52.19 ± 0.63 53.70 ± 1.23 40.24 ± 0.90 54.23 ± 1.45

ARI 28.53 ± 0.52 6.58 ± 0.30 40.57 ± 0.71 25.79 ± 1.20 41.05 ± 1.73 41.74 ± 1.68 43.11 ± 2.49 28.68 ± 0.81 45.21 ± 2.05

F-score 38.10 ± 0.47 19.37 ± 0.70 48.39 ± 0.58 35.75 ± 1.00 48.70 ± 1.47 49.38 ± 0.89 50.60 ± 1.93 38.18 ± 0.70 52.30 ± 1.75

Precision 36.25 ± 0.77 18.00 ± 0.30 46.79 ± 2.51 33.85 ± 1.34 47.65 ± 1.75 48.57 ± 3.02 48.96 ± 3.44 36.69 ± 0.91 51.37 ± 2.25

ORL ACC 33.33 ± 1.53 32.56 ± 1.36 55.08 ± 2.72 53.94 ± 3.26 58.98 ± 2.85 61.59 ± 3.01 61.31 ± 3.46 33.55 ± 1.53 64.30 ± 2.50

NMI 55.40 ± 1.23 54.88 ± 1.49 74.02 ± 1.79 73.66 ± 1.38 76.88 ± 1.82 78.50 ± 1.87 78.29 ± 2.21 56.04 ± 1.50 80.33 ± 1.71

ARI 14.74 ± 1.00 14.43 ± 1.11 40.68 ± 2.98 39.32 ± 2.72 45.91 ± 3.13 49.09 ± 3.42 48.57 ± 4.33 15.23 ± 1.06 52.16 ± 3.29

F-score 17.10 ± 0.90 16.82 ± 1.01 42.22 ± 2.90 40.94 ± 2.63 47.29 ± 3.03 50.37 ± 3.32 49.89 ± 4.20 17.57 ± 0.98 53.36 ± 3.21

Precision 14.04 ± 1.01 13.64 ± 1.22 36.70 ± 2.92 35.16 ± 4.10 41.90 ± 3.38 45.01 ± 3.49 43.99 ± 4.49 14.48 ± 1.30 48.00 ± 3.29

handwritten ACC 79.60 ± 7.86 66.69 ± 4.77 78.78 ± 6.14 83.77 ± 7.28 82.31 ± 5.56 87.10 ± 5.79 85.44 ± 7.38 80.45 ± 6.60 88.01 ± 6.14

NMI 77.76 ± 3.80 66.57 ± 3.09 78.69 ± 2.92 82.89 ± 4.16 81.91 ± 4.19 82.88 ± 2.63 84.24 ± 2.43 78.22 ± 3.87 86.17 ± 3.43

ARI 71.26 ± 6.36 55.02 ± 4.71 71.90 ± 4.63 77.52 ± 7.22 76.06 ± 7.07 78.62 ± 5.52 78.77 ± 5.88 72.31 ± 7.10 82.46 ± 6.60

F-score 74.27 ± 5.62 59.73 ± 4.15 74.86 ± 4.10 79.85 ± 6.42 78.58 ± 6.27 80.81 ± 4.91 80.97 ± 5.21 75.20 ± 6.28 84.29 ± 5.85

Precision 71.30 ± 7.02 56.94 ± 4.83 71.31 ± 5.87 77.29 ± 8.06 75.17 ± 8.12 79.30 ± 6.40 78.51 ± 7.17 72.38 ± 8.14 81.65 ± 8.25

3sources ACC 43.46 ± 5.79 42.41 ± 5.79 47.96 ± 8.62 47.34 ± 6.70 51.70 ± 8.04 48.14 ± 4.81 51.54 ± 8.86 50.21 ± 8.19 53.08 ± 7.71

NMI 19.85 ± 6.39 17.60 ± 4.83 28.95 ± 11.08 29.89 ± 8.43 28.97 ± 8.90 25.85 ± 9.51 33.72 ± 7.41 25.64 ± 7.22 31.33 ± 6.51

ARI 7.39 ± 8.59 5.94 ± 6.52 16.94 ± 11.89 16.00 ± 9.94 21.01 ± 11.61 15.63 ± 17.17 21.20 ± 11.81 15.93 ± 13.91 22.50 ± 13.89

F-score 37.25 ± 4.75 36.99 ± 3.09 42.50 ± 6.72 41.27 ± 6.42 45.46 ± 6.53 43.96 ± 9.56 45.91 ± 6.43 43.04 ± 8.26 46.01 ± 8.49

Precision 27.22 ± 5.05 26.36 ± 3.59 32.85 ± 6.91 32.17 ± 5.66 34.96 ± 7.13 31.58 ± 9.40 35.72 ± 7.74 31.89 ± 7.91 36.74 ± 9.75

MSRCV1 ACC 69.38 ± 6.27 67.02 ± 7.32 75.19 ± 5.28 78.81 ± 8.33 76.78 ± 6.79 82.26 ± 5.44 84.51 ± 6.39 77.81 ± 6.19 84.36 ± 7.93

NMI 61.18 ± 3.66 58.37 ± 4.02 68.99 ± 6.68 73.17 ± 7.64 71.18 ± 5.60 75.39 ± 6.57 78.29 ± 5.58 71.82 ± 5.96 78.72 ± 6.55

ARI 52.32 ± 4.88 48.86 ± 7.12 60.23 ± 7.03 66.87 ± 11.36 63.45 ± 8.23 67.94 ± 9.73 73.08 ± 10.33 65.07 ± 8.28 73.03 ± 9.09

F-score 59.31 ± 4.10 56.37 ± 5.95 66.14 ± 8.09 71.79 ± 9.49 68.91 ± 6.81 72.70 ± 8.06 76.98 ± 8.70 70.29 ± 6.82 76.91 ± 7.71

Precision 56.22 ± 4.53 53.66 ± 6.27 62.95 ± 6.95 68.43 ± 11.86 64.98 ± 6.47 69.45 ± 5.76 74.83 ± 10.49 66.20 ± 6.78 74.97 ± 8.97

Yale ACC 43.82 ± 2.61 43.76 ± 2.44 52.00 ± 5.02 49.58 ± 4.35 52.38 ± 5.17 56.27 ± 5.64 60.40 ± 3.90 45.45 ± 3.28 60.58 ± 6.77

NMI 49.65 ± 2.55 49.29 ± 1.70 60.47 ± 4.86 54.62 ± 3.18 56.75 ± 4.38 60.49 ± 5.21 67.28 ± 5.10 50.80 ± 2.42 66.04 ± 4.73

ARI 23.47 ± 1.69 23.35 ± 1.71 36.12 ± 7.44 29.84 ± 3.66 32.70 ± 5.79 37.22 ± 5.48 46.00 ± 7.47 24.25 ± 1.54 44.89 ± 6.90

F-score 28.78 ± 1.50 28.69 ± 1.58 41.06 ± 6.59 34.65 ± 3.18 37.22 ± 5.35 41.38 ± 6.39 49.69 ± 6.83 29.51 ± 1.31 48.53 ± 6.39

Precision 25.33 ± 1.86 25.10 ± 1.60 33.02 ± 7.44 31.12 ± 4.11 33.88 ± 5.29 38.38 ± 5.44 44.95 ± 7.51 26.01 ± 1.86 45.07 ± 6.78

WebKB ACC 56.60 ± 6.06 57.01 ± 6.51 73.30 ± 0.79 78.60 ± 1.28 74.52 ± 7.16 76.35 ± 8.30 76.49 ± 6.38 73.92 ± 5.32 77.78 ± 7.62

NMI 15.83 ± 7.77 15.19 ± 6.42 41.37 ± 3.72 44.15 ± 4.56 48.21 ± 5.84 47.97 ± 5.87 48.81 ± 3.67 43.10 ± 4.83 48.34 ± 3.55

ARI 13.20 ± 8.96 13.29 ± 7.07 44.66 ± 5.85 56.18 ± 2.15 53.66 ± 8.87 54.55 ± 7.07 57.75 ± 7.88 48.31 ± 8.29 56.60 ± 5.28

F-score 54.97 ± 0.57 54.93 ± 0.58 65.30 ± 5.78 74.73 ± 1.46 71.67 ± 6.60 72.76 ± 5.28 75.12 ± 5.75 68.81 ± 4.53 75.20 ± 6.30

Precision 46.33 ± 5.22 46.57 ± 4.28 69.75 ± 2.93 70.24 ± 3.49 74.13 ± 2.41 72.82 ± 2.47 73.73 ± 2.11 71.94 ± 2.09 75.83 ± 3.42

Fig. 3. The best ACC of different methods.

(5) CCSFS [57] leverages partition-level information to build a con-

sensus label matrix, which enhances the discriminative capability 

of selected features.

(6) CDMvFS [28] produces multiple mutually exclusive graphs to

strengthen inter-view complementarity, and couples graph learn-

ing with clustering through consistency measures.
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Fig. 4. The best NMI of different methods.

Table 5 

The paired t-test results of ACC of GDFS and comparison algorithms on all datasets.

Method Outdoor scene ORL Handwritten 3sources MSRCV1 Yale WebKB

ℎ 𝑝 ℎ 𝑝 ℎ 𝑝 ℎ 𝑝 ℎ 𝑝 ℎ 𝑝 ℎ 𝑝

TLR 1 7.83 E-21 1 6.90 E-26 1 5.82 E-15 1 1.55 E-15 1 4.78 E-14 1 4.69 E-25 1 8.90 E-09

CCSFS 1 2.73 E-08 1 1.84 E-22 1 4.59 E-18 1 1.93 E-07 1 4.78 E-20 1 1.02 E-20 1 1.25 E-04

CDMvFS 1 4.59 E-07 1 1.71 E-10 1 8.12 E-11 1 1.01 E-11 1 1.26 E-08 1 6.85 E-17 1 3.89 E-02

PTFS 1 4.68 E-05 1 7.64 E-04 1 1.71 E-12 1 5.40 E-03 0 4.16 E-02 0 4.22 E-01 0 5.56 E-02

Table 6 

The paired t-test results of NMI of GDFS and comparison algorithms on all datasets.

Method Outdoor scene ORL Handwritten 3sources MSRCV1 Yale WebKB

ℎ 𝑝 ℎ 𝑝 ℎ 𝑝 ℎ 𝑝 ℎ 𝑝 ℎ 𝑝 ℎ 𝑝

TLR 1 1.21 E-17 1 5.80 E-24 1 2.36 E-14 1 1.94 E-11 1 1.31 E-08 1 5.00 E-27 1 7.72 E-09

CCSFS 1 4.49 E-09 1 2.05 E-21 1 6.74 E-13 1 9.55 E-11 1 1.09 E-16 1 2.30 E-24 1 4.20 E-03

CDMvFS 1 1.04 E-08 1 6.95 E-10 1 6.40 E-14 1 7.57 E-16 1 1.65 E-09 1 1.01 E-18 1 1.30 E-03

PTFS 1 1.94 E-03 1 2.18 E-04 1 1.21 E-09 0 5.65 E-02 0 5.70 E-02 0 5.11 E-02 0 1.81 E-01

Table 7 

Comparison of metrics across noise levels in WebKB.

Noise 𝛼 ACC NMI ARI F-score Precision

0 77.78 ± 7.62 48.34 ± 3.55 56.60 ± 5.28 75.20 ± 6.30 75.83 ± 3.42

0.1 77.76 ± 5.47 48.41 ± 3.18 56.59 ± 5.11 75.09 ± 8.83 74.04 ± 2.23

0.3 76.28 ± 3.26 44.62 ± 3.72 53.33 ± 4.03 71.79 ± 2.61 71.36 ± 2.65

0.5 72.98 ± 2.77 42.29 ± 3.49 49.00 ± 3.02 69.12 ± 1.83 68.94 ± 2.22

(7) PTFS [58] integrates discriminative partition information and

applies self-paced learning strategies to improve unsupervised 

feature selection performance.

(8) SLNMF [54] utilizes a soft-label matrix based on local distance

for supervision, and employs linear regression to correlate low-

dimensional representations with label space, which effectively 

reduces redundancy, outliers, and noise.

4.2. Experimental setup

In this study, we assess the informativeness of the selected features 

through systematic clustering experiments. The evaluation follows 

a structured criterion: initially, features extracted from multi-view

datasets are ranked using a variety of feature selection methods. 

Subsequently, the top 𝑘 features are selected in descending order, with 𝑘 

varying over the set {10, 20, 30, … , 280, 290, 300}, to construct a series of 

reduced datasets. Each dataset is then subjected to 𝑘-means clustering, 

which produces 20 independent clustering results per 𝑘. The predicted 

clusters are compared with ground truth labels, and the mean perfor-

mance across these 20 runs is reported. Given the well-known sensitivity 

of 𝑘-means to initialization, this repetition enhances the robustness and 

reliability of our evaluation.

The primary aim of this study is to evaluate the effectiveness of the 

proposed method in addressing nonlinear problems, rather than focusing 

on the choice of kernel functions or parameter tuning. Accordingly, 

we adopt the widely used Gaussian kernel function, i.e., 𝐾(𝑥, 𝑦) =
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exp 

(

− 

‖𝑥−𝑦‖ 

2

𝑡𝑑 

2
max

) 

, where 𝑑max 

 

denotes the maximum distance between sam-

ples, to capture the nonlinear structure of the data. To limit the number 

of parameters, a fixed-parameter strategy is applied with 𝑡 = 1. In future 

work, we intend to further investigate the influence of alternative kernel 

functions and parameter settings on model performance.

To provide a comprehensive performance assessment, six widely 

accepted metrics are employed: accuracy (ACC), normalized mutual 

information (NMI), adjusted Rand index (ARI), F1 score, precision, 

and recall, with detailed descriptions available in [59]. For all met-

rics, higher values indicate the superior performance. Parameter set-

tings for comparative feature selection algorithms are adopted from 

their respective original studies to ensure fairness. Specifically, for 

 

  𝛽  𝛾    {23 , 25  

 

7CCSFS, parameters and are tuned across  , 2  

 , 29 , 211 

 }, while 

𝜆 is varied within {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1}. For CDMvFS, 𝛽 

 

3 

   {2 , 25 7spans the same range  

 , 2  

 , 2 

9 , 2 

11 }, and 𝛾 is explored over 

{0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1}. In our method, the parameter 𝜌 is ad

justed within {0.2, 0.4, 0.6, 0.8, 1}. To further guarantee impartiality, the

remaining hyperparameters across all methods are varied over the range 

{10 

−2 , 10−1 , 1, 101 , 102 

 }. This setting is consistent with the parameter

ranges used in baseline methods such as CCSFS and CDMvFS, which 

ensures the fairness of comparative experiments.

-

4.3. Experimental results

Table 4 provides a detailed summary of the experimental outcomes 

assessed using six standard evaluation metrics. The highest scores for 

each metric are marked in bold, while the second-best results are under-

lined for clarity. Figs. 3 and 4 further illustrate the impact of the varying 

number of selected features on clustering performance. Meanwhile, 

the results of the paired t-test are shown in Tables 5 and 6. Across 

the outdoor_scene_new, ORL, and handwritten datasets, the proposed 

method consistently achieves the superior performance compared to 

its counterparts. Notably, CDMvFS and PTFS also exhibit competitive 

results. In terms of ACC, our method achieves relative improvements 

of 3.19 %, 2.71 %, and 0.91 % over the second-best methods on the 

outdoor_scene_new, ORL, and handwritten datasets, respectively. With 

respect to NMI, performance gains of 0.53 %, 1.83 %, and 0.91 % are 

recorded. ARI is enhanced by 2.1 %, 3.07 %, and 3.69 %, while the F-

score sees improvements of 1.7 %, 2.99 %, and 3.32 %. For precision, 

the proposed method outperforms the closest competitors by 2.41 %, 

2.99 %, and 2.35 %, respectively.

From these tables and figures, we can draw the following conclu-

sions.

(1) The paired 𝑡 test results confirm GDFS’s superior performance

across most datasets. For ACC, GDFS showed significant improve-

ment ℎ = 1 in most cases(25/28), with particularly excellent 

results on Outdoor Scene, ORL, handwritten and 3Sources. A 

similar trend is seen in NMI, where GDFS achieves ℎ = 1 in 

most comparisons(24/28), A paired t-test between GDFS and PTFS 

yielded a result of ℎ = 0 on MSRCV1, Yale, and WebKB datasets, 

which indicates that the observed performance differences are not 

statistically significant at the 5 % level. Furthermore, GDFS re-

mains highly competitive and demonstrates consistent advantages 

across other datasets.

(2) GDFS consistently ranks among the top performers across most

experimental metrics, with particularly strong results on image 

datasets like ORL and Outdoor Scene. Its effectiveness stems from 

the joint modeling of local and global graph structures, non-

linear kernel mapping, and the integration of feature selection 

with consensus clustering. The incorporation of low-rank tensor 

constraints further enhances robustness by capturing cross-view 

consistency and reducing noise. GDFS also performs competitively 

on other image datasets like MSRCV1 and Yale, which con-

firms its generalizability. While PTFS leverages a statistics-based 

adaptive self-paced strategy, GDFS achieves comparable results

without relying on external priors, underscoring its simplicity and 

effectiveness.

(3) GDFS achieves the best performance across all metrics on the

Handwritten dataset, which highlights the effectiveness of its de-

sign. The dataset’s clear class separation favors view-invariant and 

structurally consistent pseudo-label learning. By integrating graph 

structure modeling with consensus clustering, GDFS learns highly 

discriminative shared labels, and leads to strong results. While 

CDMvFS also performs well, GDFS further benefits from low-

rank tensor constraints and kernel-based local structure modeling, 

which offer better robustness and more stable performance.

(4) On the WebKB dataset, GDFS achieves the best or second-best per-

formance across four evaluation metrics. Notably, PTFS proves to 

be an effective method, attaining the highest scores in NMI and 

ARI. These results indicate that our approach is capable of effec-

tively grouping samples into their correct categories. However, 

due to the blurred boundaries between classes and the presence 

of local noise in the WebKB dataset, some individual metrics may 

exhibit suboptimal performance.

4.4. Noise robustness

To evaluate the robustness of our method against additive Gaussian 

noise, we conducted experiments on the WebKB dataset by injecting 

scaled noise sampled from N (0, 1) with progressively increasing scal-

ing factors (noise levels) of 0.1, 0.3, and 0.5. Here, a noise level of 𝛼 

indicates that the additive noise is 𝛼 ⋅ N (0, 1), where 𝛼 = 0 corresponds 

to the original clean data. As shown in Table 7, the performance exhibits 

a graceful degradation with increasing noise intensity. Under low noise 

(𝛼 = 0.1), the method is nearly identical to the clean case (ACC: 77.76 

vs. 77.78), which demonstrates insensitivity to small perturbations. At 

moderate noise (𝛼 = 0.3), the accuracy remains competitive at 76.28, 

with NMI and F-score declining by less than 4 %, respectively. Even un-

der high noise (𝛼 = 0.5), the method maintains an ACC of 72.98, with all 

metrics showing consistently low variance. These results suggest that our 

approach is robust to graded noise corruption, with performance degra-

dation scaling predictably with noise intensity. This property is critical 

for real-world applications where data quality may vary.

4.5. Parameter sensitivity

To assess the sensitivity of the proposed algorithm to its four 

manually configured parameters, we performed a series of controlled 

experiments, each aimed at evaluating the effect of a single parame-

ter in isolation. In each experiment, one parameter was systematically 

varied while the remaining three were fixed at the midpoints of their 

respective predefined ranges. For example, when examining the impact 

of 𝛼, the other parameters were held constant, and the number of se-

lected features was adjusted across the set {50, 100, 150, 200, 250, 300} 

to explore performance across different feature dimensionalities. The 

corresponding results are visualized in Fig. 5.

The findings indicate that parameters 𝛼 and 𝜌 have a relatively minor 

influence on clustering performance across various datasets, which sug-

gests that the algorithm demonstrates a degree of insensitivity to their 

specific settings. In contrast, 𝛽 exhibits a more significant impact, with 

larger values generally leading to enhanced performance. The influence 

of 𝛾 appears to be dataset-specific. For instance, in image-based datasets 

such as outdoor_scene_new, ORL, and handwritten, lower values of 𝛾 

tend to yield better results. However, for structured datasets like WebKB, 

higher values of 𝛾 are preferable. These observations underscore the im-

portance of parameter sensitivity tuning in optimizing performance in 

multi-view learning applications.

4.6. Convergence study

Fig. 6 illustrates the convergence behavior of the proposed 

GDFS algorithm. Owing to the multi-block structure inherent in
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Fig. 5. Parameter sensitivity on different datasets.

Algorithm 1, which comprises five interdependent sub-problems, de-

riving a theoretical convergence guarantee remains a challenging 

task. Nevertheless, each sub-problem can be independently optimized 

to its respective minimum, which contributes to the algorithm’s 

overall stability. Empirical evidence across diverse datasets confirms

that GDFS converges consistently, with a rapid decline in the ob-

jective function observed within the first five iterations, followed

by a steady convergence trend. These findings collectively affirm 

the practical convergence efficiency and reliability of the proposed 

method.
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Fig. 6. Convergence study on different datasets.

5. Conclusion

In this work, we propose a novel multi-view unsupervised feature 

selection framework, termed GDFS, which effectively integrates local 

and global graph learning within a unified structure. By jointly model-

ing nonlinear local relationships in a kernel space and global structures 

from projected low-dimensional representations, GDFS captures both 

fine-grained and holistic data characteristics. Additionally, a graph 

discrepancy term and a low-rank tensor constraint are introduced to 

enhance inter-view consistency and suppress noise, while a consensus 

clustering matrix provides pseudo-label supervision for more robust fea-

ture selection. Although GDFS demonstrates strong performance across 

multiple benchmark datasets, it has several limitations: (1) it treats all 

views equally, which ignores their varying importance; (2) its com-

putational complexity increases linearly with data size, which hinders 

scalability. In future work, we aim to address these issues by introduc-

ing an attention-based view-weighting strategy, and employing anchor 

graph techniques to reduce time complexity.
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