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Highlights

• Fully consider the global and local geometric structures of multi-view data

• Introducing tensors to capture high-order correlations between different views

• Learning the latent representation for unsupervised feature selection

• An efficient solver is developed to solve the proposed optimization problem
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Abstract

The low cost and high efficiency of multi-view unsupervised feature selection (MvUFS)

have greatly stimulated research interest in this field. However, existing graph-based

MvUFS methods typically focus solely on either the consistency or the diversity of

multi-view data, let alone jointly considering both. Moreover, most approaches rely

on matrix optimization while neglecting the exploration of higher-order correlations.

In this work, we propose a novel multi-view learning framework for unsupervised fea-

ture selection to address these problems. First, a unified module is designed to jointly

measure consistency and diversity, enabling the construction of a pure graph for each

view. These pure graphs are then fused to generate a consensus graph, which, together

with latent representations, mutually constrains and facilitates the learning of optimal

pure graphs. Furthermore, we employ a low-rank tensor to preserve high-order corre-

lations among views. The proposed methods are seamlessly integrated into a unified

framework. Extensive experiments demonstrate that our model outperforms several

state-of-the-art feature selection algorithms.

Keywords: Unified measurement, Tensor analysis, Multi-view learning, Latent

representation.

∗Corresponding author at: School of Information Science and Engineering, Ningbo University, Ningbo
315211, China.

Email addresses: 2211100288@nbu.edu.cn (Shengke Xu), xjxie11@gmail.com (Xijiong Xie),
guoqingchao@hit.edu.cn (Guoqing Chao), xiong@sues.edu.com (Yujie Xiong)

Preprint submitted to Pattern Recognition November 10, 2025

                  



1. Introduction

Nowadays, the rapid advancement of imaging and sensing technologies has sig-

nificantly broadened the application of multi-view data [1]. Multi-view data refers to

information collected from multiple perspectives or using different devices. For exam-

ple, in medical imaging, various techniques such as CT, MRI, and X-ray [2] provide

complementary views of the same subject; in biochemistry, drugs and proteins can

be represented by their structural and chemical views [3]; and in autonomous driving,

multi-view data is obtained by integrating information from on-board cameras, Li-

DAR, and radar sensors [4], which enables vehicles to perceive their environment with

the greater accuracy. The study of multi-view data processing has garnered signifi-

cant attention [5, 6]. However, despite the richer information and more comprehensive

analytical capabilities offered by multi-view data compared to single-view data, chal-

lenges arise, such as increased computational complexity and storage requirements,

redundant information across views, and the heterogeneity between views, which col-

lectively complicate data fusion [7, 8, 9].

To address the aforementioned challenges, dimensionality reduction algorithms

have emerged as a prominent research focus. These algorithms aim to retain the

most informative features in the original data while eliminating noise and redundant

features. In machine learning, the two most representative dimensionality reduction

methods are feature extraction and feature selection, respectively [10, 11]. Feature ex-

traction involves transforming high-dimensional data into a lower-dimensional space,

while feature selection identifies a subset of original features, effectively preserving

the spatial structure of the original data and reducing the risk of overfitting. This paper

focuses on exploring methods for multi-view feature selection. Multi-view feature se-

lection can be categorized based on the availability of sample labels: supervised [12],

semi-supervised [13, 14, 15], and unsupervised [11, 16, 17, 18]. In the context of big

data, obtaining labeled data is often costly, making unsupervised multi-view feature

selection particularly relevant and practically significant.

Current graph-based feature selection methods have demonstrated their effective-

ness in various applications. However, several limitations persist. First of all, there
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are noise and outliers in real-life data sets, which will cause the subsequently selected

features not to have the best discriminant information. Secondly some methods sim-

ply consider the consistency [19] and diversity [20] of multi-view data independently,

neglecting the underlying relationship between the two. Overemphasizing consistency

can lead to the loss of distinctive, discriminative information within individual view,

while an excessive focus on diversity weakens the consensus representation across

views. Although certain approaches account for both consistency and diversity [21],

they treat consistency and diversity as separate modules, failing to fully capture their

intrinsic connections. Additionally, most methods employ matrix optimization strate-

gies, which often overlook inter-view correlations and struggle to explore higher-order

relationships that ensure global consistency. This limitation hampers the effective inte-

gration of fundamental information from multiple views.

In our approach, we fully address the aforementioned issues and propose Multi-

view Unsupervised Feature Selection with Unified Measurement of Consistency and

Diversity (UCDMvFS). This model can explore consistency and diversity at the same

time, extract complementary information between multiple views, and the inherent

consistent pure part and relative diversity part of each view by detecting and removing

extremely special diversity part in the views. Firstly, our method uses graph learning

to generate a similarity matrix for each view, which is then detected and compared

with a pre-trained high-quality graph. Accordingly, the inherent consistent pure part

and relative diversity part of each view are extracted and fused into a consensus struc-

ture graph with precisely required connected parts. Secondly, the consensus structure

graph is processed by symmetric non-negative matrix factorization, where latent rep-

resentations are used to mutually constrain and promote the learning of optimal pure

graphs. Finally, multiple pure graphs are stacked into a third-order tensor with low-

rank constraints to reserve high-order correlations between views [22, 23]. UCDMvFS

integrates unified measurement, tensor analysis, pure graph learning, latent represen-

tations, and feature selection into a unified optimization model. To provide a more

intuitive representation of our proposed method, we visualize UCDMvFS in Fig. 1.

The main contributions of this work are as follows.
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Fig 1: The framework of the proposed UCDMvFS method is provided. The method mainly includes the

following modules: (a) stacking pure graphs into third-order tensors to learn high-order information; (b)

applying T-SVD-based tensor nuclear norm to explore high-order correlations between multiple views; (c)

pre-trained high-quality graphs; (d) clustering feedback on the consistent structure graph using latent repre-

sentation; (e) the final feature selection process.
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1. We propose a new method to uniformly measure the consistency and diversity in-

formation of views, which can promote mutual learning during the optimization

process.

2. We use a third-order tensor with low-rank constraints to preserve the high-order

correlation between views and retain more complete global structural informa-

tion.

3. We develop an effective optimization algorithm to solve the optimization prob-

lem of the objective function and demonstrate the effectiveness of the proposed

method through a large number of comprehensive clustering experiments.

The structure of this paper and an overview of its subsequent sections are outlined

as follows. Section 2 briefly introduces algorithms closely related to our approach.

In Section 3, we provide a detailed description of the proposed method, including the

optimization process and model analysis. Section 4 details the experimental setup and

presents the results. Finally, in Section 5, we present the conclusions of this study and

outline potential future research directions.

2. Related Works

2.1. Notations

First, we elucidate the notations employed in this paper. In our notation, tensors are

denoted by uppercase script letters, matrices are represented by boldface capital letters,

vectors by bold lowercase letters, and scalars by italic letters. Given an arbitrary matrix

X ∈ Rd×n, Xi j denotes its (i, j)-th entry, while xi and x j denote its i-th row and j-th col-

umn, respectively. Table 1 lists all the commonly used symbols in the paper. Next, we

briefly explain the norms employed in this paper: ∥X∥F =
√∑n

i=1
∑d

j=1X2
i j is the Frobe-

nius norm of X, the ℓ2,1-norm is defined as ∥X∥2,1 =
∑n

i=1

√∑d
j=1X2

i j, and the tensor

nuclear norm based on t-SVD is defined as ||C||⊛ =
∥∥∥∥
(
Fn3 ⊗ In1

)
bcicr(C)

(
F∗n3
⊗ In2

)∥∥∥∥∗.

2.2. Consistency and diversity learning

Significant progress has been made in mining consistency and diversity informa-

tion when dealing with multi-view data. In multi-view clustering algorithms, some
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Table 1: Notations.

Symbols Definition and description

n The number of data instances

dv The feature dimension of the v-th view

V The number of views

Xv ∈ Rdv×n The data matrix of the v-th view

xv
i ∈ Rdv×1 The i-th row of the matrix Xv

Cv The similarity matrix of the v-th view

Hv ∈ Rdv×c The feature selection matrix of the v-th view

U ∈ Rn×n The consistency representation matrix

C ∈ Rn1×n2×n3 The 3-order tensor

Fn3 ∈ Rn3×n3 The Discrete Fourier Transform matrix

Zv ∈ Rn×n The predefined similarity matrix of the v-th view

Ic, In The identity matrix

α, β, η, λ The hyperparameters

XT The transpose operator of matrix X

⊗ The Kronecker product

Tr(·) The trace operator of a matrix

diag(·) The diagonal elements of a matrix

bcicr(·) The operation of a block-cyclic matrix

approaches focus solely on either consistency [24, 25] or diversity [26, 27], while oth-

ers consider both to capture more comprehensive information. For instance, Li et al.

[28] proposed a method that simultaneously accounts for diversity and consistency in

both the data space and the learned label space, aiming to learn a pure and robust la-

bel matrix for multi-view clustering tasks. Huang et al. [29] introduced a method that

jointly measures consistency and diversity, enabling these complementary criteria to

be seamlessly integrated into the overall design of the clustering algorithm. Zhang et

al. [30] proposed a separable consistency and diversity feature learning method to ad-

dress the conflict between consistency alignment and reconstruction objectives. Hao et

al. [31] incorporated a graph regularizer into low-rank tensor representation learning

to uncover the consistent manifold information embedded within multi-view data. Mi

et al. [32] proposed learning both a consistent representation and a diverse set of rep-
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resentations within a latent embedding space, leading to the learning of an improved

affinity matrix.

In multi-view feature selection algorithms, consistency and diversity are also con-

sidered. For example, Cao et al. [8] simultaneously accounted for graph heterogene-

ity and label consistency, effectively exploring both heterogeneous and homogeneous

information to enhance feature selection tasks. Tang et al. [21] leveraged shared and

partitioned information between different views by projecting it into a label space com-

posed of both consensus and view-specific parts. Cao et al. [33] generated multiple mu-

tually exclusive graphs from views to enhance the complementary information across

views. Huang et al. [34] proposed a similarity graph reconstruction model guided by

complementary learning, where sparse linear combinations of multiple similarity ma-

trices derived from different views were used to obtain a complete similarity graph

for each view. However, while these methods have yielded satisfactory results, a uni-

fied measurement of consistency and diversity has not yet been developed for feature

selection.

2.3. Structural graph learning

In unsupervised feature selection, applying graph structures has significantly im-

proved the algorithm accuracy. Early methods employed spectral analysis to preserve

the data’s local geometric structure [35]. Local structure emphasizes the data relation-

ship within the local neighborhoods. This approach is inspired by traditional dimen-

sionality reduction methods such as Laplacian Eigenmaps (LE) and its linear exten-

sion, Locality Preserving Projections (LPP). Similarly, subsequent methods introduced

graph regularization to retain the local geometric structure [16]. Specifically, the points

that are adjacent in high-dimensional space should remain adjacent in low-dimensional

space. This can be expressed as follows.

n∑

i=1

n∑

j=1

∥∥∥WvT xv
i −WvT xv

j

∥∥∥2
S v

i j + Ω(W), (1)

where S v
i j represents the local similarity graph for the v-th view, Wv is the projection

matrix for the v-th view, and Ω(W) denotes the regularization or constraint on W. Dur-

ing the same period, the concept of preserving global structures was introduced, utiliz-
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ing subspace learning and self-representation learning to retain the global structure of

the data [17, 36]. The global structure emphasizes the data relationship of the overall

data. Given that both local and global structures are beneficial for feature selection,

some approaches have incorporated and preserved both types of structural information

[37, 38]. Wu et al. [39] proposed an innovative method that jointly performs structural

learning and feature selection, exploring the intrinsic relationship between the two.

Cao et al. [8] have extended this framework to the multi-view data domain, as outlined

below.

min
HvSv

∑

v

∥∥∥HT
v Xv −HT

v XvSv

∥∥∥2
F + α ∥Sv∥2F + Ω (Hv) , (2)

where Sv ∈ Rn×n denotes the similarity matrix for each view and Hv ∈ Rd×c denotes

the feature weight matrix for each view. The last two terms are regularization terms

imposed on Sv and Hv, respectively.

2.4. Tensor learning

For the tensor learning the first step involves modeling each view of the same di-

mensionality using either graph-based or self-representation-based schemes. Subse-

quently, all similarity graphs are stacked into a third-order tensor to facilitate tensor-

based operations and constraints. Similar to low-rank representation (LRR) methods,

which enforce low-rank properties via the nuclear norm, tensor-based approaches aim

to find a tight relaxation of the tensor rank to achieve the same objective. Three main-

stream tensor decomposition techniques exist: CANDECOMP/PARAFAC (CP) [40],

Tucker [41], and Tensor Singular Value Decomposition (t-SVD) [42]. Among them,

the tensor nuclear norm based on t-SVD offers the tightest convex relaxation of the

tensor multi-rank [43]. As a result, t-SVD based multi-view feature selection methods

generally exhibit the superior performance.

Our survey indicates that Zhang et al. [44] were the first to propose tensor-based

multi-view feature selection, effectively exploring high-order correlations among multi-

view data. Wang et al. [45] constructed pseudo-labels for each view and applied tensor

learning on these labels to capture high-order correlations. Yuan et al. [46] employed

tensor learning on local graph structures to enhance the high-order relationships be-
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tween views. Liang et al. [47] utilized tensor learning on the denoised portions of the

learned similarity graphs to capture high-quality high-order information.

The application of tensor methods in multi-view unsupervised feature selection

(MvUFS) remains relatively limited. Our experiments with several method combina-

tions revealed that applying tensor learning to the global structure graph enables more

comprehensive learning of high-order correlations between views, effectively enriching

the inter-view information.

3. Proposed Method

3.1. Model Framework

The proposed approach employs a multi-view data processing framework that in-

tegrates structure learning with feature selection. An affinity graph is independently

constructed for each view, and the specific form is given in Eq.(3) as follows.

min
Hv,Cv

V∑

v=1

∥∥∥HT
v Xv −HT

v XvCv

∥∥∥2
F + ∥Hv∥2,1 + ∥Cv∥2F

s.t. HT
v XvXT

v Hv = Ic,

(3)

where the last two terms represent regularization terms, used to constrain both the fea-

ture selection component and the self-representation reconstruction component. Among

the additional constraints, the PCA-like constraint HT
v XvXT

v Hv = Ic is employed to

minimize redundancy in the original data as much as possible.

The aforementioned paradigm effectively captures the global structure within each

view but does not explicitly account for consistency and diversity across views. Con-

sistency captures the shared, significant information across multiple views, while di-

versity helps uncover unique feature information. In multi-view unsupervised feature

selection, balancing these two aspects is a key challenge. Overemphasizing consistency

may lead to overlooking unique information in individual view, whereas excessive em-

phasis on diversity could result in neglecting commonalities across views. Therefore,

designing algorithms and strategies that appropriately balance these factors maintain-

ing alignment across different views while fully leveraging their differences is crucial
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for better feature selection in multi-view data. Consequently, we propose introducing

consistency and diversity learning into the model.

The objective of consistency is to learn a consensus graph U. We can obtain con-

sistency information from similarity graphs by integrating multiple similarity graphs

{C1,C2, · · · ,Cv}. This can be formulated as

min
U

∑V
v=1 ∥U − Cv∥F

s.t. uT 1 = 1,U ≥ 0,
(4)

where u represents a column vector of U. This equation does not incorporate view-

specific weights. To avoid introducing additional hyperparameters through the weights,

we adopt an inverse distance weighting strategy [48], in which the weight of the i-th

view is defined as

µv =
1

2 ∥U − Cv∥F
, (5)

where the weight µv is entirely data-driven. Incorporating the self-learned weight µv,

Eq.(4) can be reformulated as

min
U

∑V
v=1 µ

v ∥U − Cv∥2F
s.t. uT 1 = 1,U ≥ 0.

(6)

In terms of diversity, we consider the potential discrepancies between the local and

global structures, both of which are crucial for feature selection. Therefore, we employ

the W_PKN algorithm [49] to pre-construct high-quality local structure information for

each view, denoted as {Z1,Z2, · · · ,Zv}. Next, we compute the difference between the

local structure graph and the global structure graph obtained from Eq.(3), denoted as

Zi − Ci. If the diversity between views is sparse, the sum of the products across views

should be minimized. At the same time, we aim to minimize intra-view divergence

[26]. Based on these considerations, the expression can be formulated as follows.

min
Cv

V∑

v,w=1

wvwµ
vµw Tr

(
(Zv − Cv) (Zw − Cw)T

)
(7)

s.t. Zv ≥ Cv ≥ 0, v,w = {1, . . . ,V},

where W = [wvw] ∈ RV×V is a square matrix, with the off-diagonal elements repre-

sented by λ and the diagonal elements by η, respectively. By combining Eqs.(3), (6),
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and (7), the rewritten expression is as follows.

min
Hv,Cv,U

V∑

v=1

∥∥∥HT
v Xv −HT

v XvCv

∥∥∥2
F +

V∑

v=1

∥Hv∥2,1

+ ∥Cv∥2F +
V∑

v=1

µv ∥U − Cv∥2F

+

V∑

v,w=1

wvwµ
vµw Tr

(
(Zv − Cv) (Zw − Cw)T

)
(8)

s.t. HT
v XvXT

v Hv = Ic,uT 1 = 1,U ≥ 0,

Zv ≥ Cv ≥ 0, v,w = {1, . . . ,V}.

High-order information provides a more comprehensive representation of correla-

tions between data. Therefore, we introduce tensor analysis to the global graph struc-

ture by stacking {C1,C2, · · · ,Cv} into a third-order tensor C ∈ Rn×n×V , while ensuring

the low-rank property of C through the tensor nuclear norm based on t-SVD. Conse-

quently, Eq.(8) can be reformulated as follows.

min
Hv,Cv,U,C

V∑

v=1

∥∥∥HT
v Xv −HT

v XvCv

∥∥∥2
F +

V∑

v=1

∥Hv∥2,1

+ ∥C∥⊛ +
V∑

v=1

µv ∥U − Cv∥2F

+

V∑

v,w=1

wvwµ
vµw Tr

(
(Zv − Cv) (Zw − Cw)T

)
(9)

s.t. HT
v XvXT

v Hv = Ic,uT 1 = 1,U ≥ 0,

Zv ≥ Cv ≥ 0, v,w = {1, . . . ,V},

where C = Φ(C1,C2, . . . ,Cv), with Cv ≥ 0. Φ(·) denotes the operation of forming the

third-order tensor C by stacking the global structure graphs from different views.

To enhance interconnections among data, we decompose the data into a latent

space, extracting latent relational information between them. Specifically, the latent

representations of different samples interact to form connection information, where

samples with similar latent representations are more likely to be connected compared

to those with distinct latent representations. Typically, the latent representation of con-

nection information is formed through a symmetric non-negative matrix factorization
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model, which decomposes the consensus similarity matrix U into the product of a non-

negative matrix V and its transpose VT in a lower-dimensional latent space. By incor-

porating this into Eq.(9), our model can be ultimately expressed as follows.

min
Hv,Cv,U,C,V

V∑

v=1

∥∥∥HT
v Xv −HT

v XvCv

∥∥∥2
F + α ∥C∥⊛ + β

V∑

v=1

∥Hv∥2,1

+

V∑

v,w=1

wvwµ
vµw Tr

(
(Zv − Cv) (Zw − Cw)T

)

+

V∑

v=1

µv ∥U − Cv∥2F +
∥∥∥U − VVT

∥∥∥2
F (10)

s.t. HT
v XvXT

v Hv = Ic,uT 1 = 1,U ≥ 0,V ≥ 0,

VT V = Ic,Zv ≥ Cv ≥ 0, v,w = {1, . . . ,V},

where V is the latent representation matrix, which can be used as a clustering structure

for the data to reduce the negative impact of noisy connections in the affinity graph,

thereby improving the overall robustness of the model, while α and β are balance hy-

perparameters.

3.2. Optimization

Due to the interdependence of variables in Eq.(10), direct optimization is challeng-

ing. To overcome this difficulty, we developed an alternating optimization strategy that

iteratively optimizes one variable while keeping the others fixed.

First, we introduce an auxiliary tensor G to decouple the variable updates. As a

result, Eq.(10) is reformulated as follows.

min
Hv,Cv,U,G,V

V∑

v=1

∥∥∥HT
v Xv −HT

v XvCv

∥∥∥2
F + α ∥G∥⊛ + β

V∑

v=1

∥Hv∥2,1

+

V∑

v,w=1

wvwµ
vµw Tr

(
(Zv − Cv) (Zw − Cw)T

)

+

V∑

v=1

µv ∥U − Cv∥2F +
∥∥∥U − VVT

∥∥∥2
F (11)

s.t. HT
v XvXT

v Hv = Ic,uT 1 = 1,U ≥ 0,V ≥ 0,

VT V = Ic,Zv ≥ Cv ≥ 0, v,w = {1, . . . ,V},C = G.
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Ultimately, we optimize the proposed method using an augmented Lagrange multiplier-

based alternating direction method of multipliers (ALM-ADMM) [50]. The final form

of the augmented Lagrangian function is expressed as follows.

L(Hv,Cv,G,U,V) =

min
Hv,Cv,U,G,V

V∑

v=1

∥∥∥HT
v Xv −HT

v XvCv

∥∥∥2
F + α ∥G∥⊛ + β

V∑

v=1

∥Hv∥2,1

+

V∑

v,w=1

wvwµ
vµw Tr

(
(Zv − Cv) (Zw − Cw)T

)

+

V∑

v=1

µv ∥U − Cv∥2F +
∥∥∥U − VVT

∥∥∥2
F (12)

+
ρ

2

∥∥∥∥∥G − C −
P
ρ

∥∥∥∥∥
2

F

s.t. HT
v XvXT

v Hv = Ic,uT 1 = 1,U ≥ 0,V ≥ 0,

VT V = Ic,Zv ≥ Cv ≥ 0, v,w = {1, . . . ,V},

where P represents the Lagrange multipliers and ρ > 0 denotes the penalty parameter.

We employ an efficient alternating optimization strategy to iteratively solve Eq.(12).

ADMM effectively decomposes the problem into multiple subproblems, each of which

is solved independently, thereby reducing the overall complexity of the optimization.

The detailed alternating updated scheme is as follows.

G−subproblem :By fixing the other variables, the terms related to G in Eq.(12) can

be extracted and expressed as follows.

min
G
α ∥G∥⊛ +

ρ

2

∥∥∥∥∥G − C −
P
ρ

∥∥∥∥∥
2

F
, (13)

Based on the tensor nuclear norm minimization problem outlined in [51], the optimiza-

tion of G can be achieved through the following steps.

G∗ = Rρ′
(
C + 1
ρ
P
)
= U ∗ Rρ′ (O) ∗ VT, (14)

where ρ′ = n/ρ,
(
C + 1

ρ
P
)
= U ∗ O ∗ VT and Rρ′ (O) = O ∗ J . Here, J is the

f -diagonal tensor, with its diagonal elements in the Fourier domain represented as

J f (i, i, j) = max
(
0, 1 − ρ′

O( j)
f (i,i)

)
.
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(C1,C2, ...,CV )−subproblem :By removing irrelevant items, we need to solve the

Eq.(12) which is simplified as the following form.

min
Cv

V∑

v=1

∥∥∥HT
v Xv −HT

v XvCv

∥∥∥2
F +

V∑

v=1

µv ∥U − Cv∥2F

+

V∑

v,w=1

wvwµ
vµw Tr

(
(Zv − Cv) (Zw − Cw)T

)

+
ρ

2

∥∥∥∥∥Gv − Cv − Pv

ρ

∥∥∥∥∥
2

F
, (15)

s.t. Zv ≥ Cv ≥ 0.

By calculating the derivative of Eq.(15) with respect to Cv and letting it to be zero, we

can get the updating rule of Cv as below.

Cv =max(
2Kv + ξEv + 2µvU + ρGv − Pv

2Kv + 2µvI + ρI
, 0),

Cv =min(Zv,Cv), (16)

where ξ =
∑V

v,w wvwµ
vµw, Ev = Zv − Cv and Kv = XT

v HvHT
v Xv.

Hv−subproblem :Extracting the relevant terms, the subproblem concerning Hv is

formulated as follows.

min
Hv

∥∥∥HT
v Xv −HT

v XvCv

∥∥∥2
F + β ∥Hv∥2,1 (17)

s.t. HT
v XvXT

v Hv = Ic.

The presence of the ℓ2,1-norm necessitates the introduction of a diagonal matrix Dv,

with its elements obtained through the following equation.

Dv[i,i] =
1

max
(
2
∥∥∥Hv[i,:]

∥∥∥
2 , ε

) , (18)

where ε is introduced to handle the case when
∥∥∥Hv[i,:]

∥∥∥
2 = 0. Using Rv = (In −Cv)(In −

Cv)T and Eq.(18), the optimization problem for H is transformed into

min
Hv

Tr
[
HT

v

(
XvRvXT

v + βDv

)
Hv

]
(19)

s.t. HT
v XvXT

v Hv = Ic.
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The optimal Hv can be obtained by solving the following generalized eigen-problem

[33].
(
XvRvXT

v + βDv

)
Hv = ΓvXvXT

v Hv, (20)

where Γv is a diagonal matrix with its diagonals filled by eigenvalues. However, solving

Eq.(20) requires that XvXT
v be nonsingular. Additionally, the computational complex-

ity of this solution is O(d3 + nd3), which is impractical for high-dimensional data.

Referring to [33], we obtain the optimal Hv by solving the following problem.

min
Hv

∥∥∥Yv − XT
v Hv

∥∥∥2
F + α ∥Hv∥2,1 , (21)

where Yv consists of eigenvectors corresponding to the c smallest eigenvalues by solv-

ing the eigen-problem RvYv = ΓvYv. Using the diagonal matrix defined in Eq.(18) and

the Iterative Reweighted Least-Squares (IRLS) [52] algorithm, the optimal Hv can be

obtained by

Hv =
(
XvXT

v + βDv

)−1
XvYv. (22)

U−subproblem :By fixing the remaining variables, the terms related to U are ex-

tracted as follows.
V∑

v=1

µv ∥U − Cv∥2F +
∥∥∥U − VVT

∥∥∥2
F (23)

s.t. uT 1 = 1,U ≥ 0,V ≥ 0,

Evidently, the update for each view is independent, and we express the element-wise

form of Eq.(23) as follows.

min
ui

m∑

i=1

n∑

j=1

µv
(
ui j − cv

i j

)2
+

(
ui j − vivT

j

)2
(24)

s.t. uT
ı 1 = 1, ui j ≥ 0,

where ui j represents the j-th element corresponding to the row vector ui. Let bi =

(VVT )i. After merging, Eq.(24) can be reformulated into a more intuitive expression.

min
ui

ui −
∑V

v=1 µ
vcv

i + bi
∑V

v=1 µ
v + 1


2

(25)

s.t. uT
ı 1 = 1, ui j ≥ 0,
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Finally, we solve Eq.(25) using the method proposed in [29].

V−subproblem :Through simple algebraic manipulation, the update for V has the

following equivalent formulation.

min
V

Tr
[
VT (In − 2U) V

]
(26)

s.t. VT V = Ic.

To clearly and intuitively present the solution process, we summarize the above

steps in Algorithm 1.

Algorithm 1 The detailed iteration of the UCDMvFS
Input : Multi-view data set: X = {X1, · · · ,XV } ∈ Rdv×n; the number of clusters classes

c; the hyperparameters α, β, η, λ.

Initialize : Let Hv, Cv, V as rand matrix and µv = 1/V; Zv is initialized by W_PKN;

P = G = 0; set ρ = 1, γ = 2, ρmax = 1012.

1: while not converged do

2: Update G by solving the problem in Eq.(14);

3: Update Cv by solving the problem in Eq.(16);

4: Update Hv by solving the problem in Eq.(22);

5: Update U by solving the problem in Eq.(25);

6: Update V by solving the problem in Eq.(26);

7: Update µv by solving the problem in Eq.(5);

8: Update P by P = P + ρ(C − G);

9: Update ρ by min(ργ, ρmax);

10: End while

Output : {Hv}Vv=1;

Feature selection : Compute all
∥∥∥Hv

i

∥∥∥
2 and rank the features in descending order

according to their scores, then select the top K features with the highest scores. The

final feature subset consists of the corresponding discriminative features.
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3.3. Complexity Analysis

Following Algorithm 1, we derive the time complexity of the model through six

steps. First, updating the tensor G involves calculating the tensor FFT, inverse FFT, and

the SVD decomposition of an n×V matrix, with a complexity of O(n2V2+2n2V log(n)).

Second, the computation of Cv involves an inversion operation with a complexity of

O(n3). Third, updating the feature weight matrix Hv requires solving the eigenvalue

problem and performing sparse feature selection, with a corresponding computational

complexity of O(cn2 + d3
v ). Fourth, updating U results in a computational complexity

of O(cn). Fifth, updating V involves SVD, leading to a complexity of O(cn2). Lastly,

the update of µv has a complexity of O(Vn2). Considering that c ≪ n and V ≪ n, the

overall computational complexity of the model is O(n3 + n2V2 + 2n2V log(n)).

3.4. Convergence Analysis

The model consists of five optimization sub-problems, and the overall convergence

analysis of the model is difficult. Therefore, we decompose the sub-problems and

update one of the variables while keeping the other variables unchanged. For Cv, it is a

closed-form solution. For Hv, it includes a ℓ2,1-norm regularization term, which means

that the update Hv is convex but not smooth. It can be solved using known methods

[8, 33]. We use the IRLS algorithm to effectively solve this problem and ensure the

convergence of the objective function. For V, based on the Kuhn-Tucker condition

[53], the objective function value decreases with iteration, and the optimal solution of

V can be obtained. For G, it satisfies ∥G − C∥∞ < eps, where eps is a very small value

that stops the iteration. In addition, subsection 4.7 will provide experimental evidence

to further verify the convergence of the model.

4. Experiments

4.1. Datasets

In our model validation experiments, we evaluated the effectiveness of the UCD-

MvFS algorithm using nine different benchmark multi-view datasets. For reference,

the detailed information of these multi-view datasets is compiled in Table 2.
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Table 2: Detailed information of the multi-view datasets used in our experiments.

Feature Handwritten Caltech101-7 MSRCV1 Outdoor scene ORL 3Sources yale WebKB BBCSport

1 FCCS(76) GAB(48) CMT(24) GIST(512) View 1(4096) BBC(3560) Intensity(4096) Text(1703) View 1(3183)

2 KAR(64) WM(40) HOG(576) HOG(432) View 2(3304) Reuters(3631) LBP(3304) Link(230) View 2(3203)

3 FAC(216) CENTRIST(254) GIST(512) LBP(256) View 3(6750) Guardian(3068) GABOR(6075) Title(230) -

4 PA(240) HOG(1984) CENTRIST(254) GABOR(48) - - - - -

5 ZER(47) GIST(512) LBP(256) - - - - - -

6 MOR(6) LBP(928) - - - - - - -

Instance 2000 1474 210 2688 400 169 165 203 544

Class 10 7 7 8 40 6 15 4 5

4.2. Compared Methods

We used the aforementioned datasets to experimentally compare the proposed method

with both classical and state-of-the-art algorithms. The specific details of the algo-

rithms used for comparison are briefly summarized below

• LS [35] is a feature selection method that emphasizes preserving locality by

ensuring that distances between similar samples are minimized.

• CGMvUFS [19] learns a latent feature matrix across all views and optimizes the

consensus matrix to minimize the dissimilarity between the clustering indicator

matrix of each view and the consensus matrix.

• NSGL [54] learns a structured graph directly from raw features by applying hier-

archical constraints, simultaneously utilizing the complementary nature of multi-

view features for adaptive feature selection.

• TLR [46] generates multiple graphs and aggregates them into a tensor under the

low-rank constraint to capture high-order inter-view information.

• TRCA-CGL [47] leverages low-rank tensor learning and consensus graph learn-

ing to acquire high-quality local structures and reliable pseudo-cluster labels,

which guide feature selection.

• CDMvFS [33] aims to generate multiple mutually exclusive graphs to enhance

inter-view complementarity and uses consistency metrics to integrate graph learn-

ing and clustering learning.
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• JMVFG [55] leverages orthogonal decomposition to obtain clustering indicators

for each view, unifying graph learning and MvUFS within a single framework.

• SCMvFS [8] generates a unified clustering indicator through spectral analysis,

simultaneously accounting for the heterogeneity of graphs and the consistency

of indicators to enhance feature selection.

4.3. Experimental Setup and Metrics

To evaluate the performance differences between the proposed method and the com-

parison methods more intuitively and effectively, we adjusted several parameter set-

tings based on recommendations from relevant literature on the comparison algorithms.

For CGMvUFS, the neighborhood size and bandwidth of the Gaussian kernel function

were set to 5 and 1, respectively, with r set to 2. For TLR, the adjustment range was set

to {0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1} to control consistency. The tensor parameters

in our method and TLR were tuned within the range {0.0001, 0.001, 0.01, 0.1, 1}. For

fairness, the remaining parameters were varied within the set {0.01, 0.1, 1, 10, 100}.
Next, we conducted a series of clustering experiments using the k-means algorithm.

Since k-means is sensitive to the initial point selection, we ran it 20 times and calcu-

lated the average performance. The number of selected features in the experiments

was controlled within the range {10, 20, 30, ..., 280, 290, 300}. All experiments were

conducted in MATLAB R2022b on a machine equipped with an Intel(R) Core(TM)

i5-10500 CPU @ 3.10GHz and 16 GB of RAM.

For the evaluation metrics, we selected fours of the most representative indicators:

Accuracy (ACC), Normalized Mutual Information (NMI), Adjusted Rand Index (ARI),

and F-score. Higher values of these metrics indicate better clustering performance

of the selected features, suggesting that the features are more suitable for subsequent

clustering tasks.

4.4. Experimental Results and Analysis

The results of the four metrics for all methods across different datasets are summa-

rized in Table 3. The best results are highlighted in bold, and the second-best results are

underlined. Except for the handwritten dataset, our method consistently achieves either
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Table 3: Clustering evaluation metrics across different datasets for various methods.

Datasets Metrics LS CGMvFS NSGL TLR TRCA-CGL CDMvFS JMVFG SCMvFS UCDMvFS

ACC 60.50±5.67 68.07±5.91 69.95±6.12 77.79±9.16 83.29±5.20 79.57±6.44 82.81±6.39 80.50±4.65 85.69±8.71

MSRC_v1
NMI 48.68±3.52 58.46±3.33 64.26±5.07 72.59±7.46 73.79±2.26 74.15±3.60 77.51±4.65 73.01±4.96 80.78±6.64

ARI 38.36±3.78 48.70±5.15 54.21±5.71 65.52±10.71 69.29±4.45 67.40±2.81 72.00±6.73 66.03±7.84 75.26±9.68

Fscore 47.45±3.08 56.24±4.24 60.82±4.81 70.69±8.92 73.66±3.72 72.14±2.38 76.06±5.68 71.01±6.55 78.81±8.20

ACC 46.82±2.13 26.85±0.72 46.15±1.62 48.31±2.06 60.42±2.96 62.81±5.14 44.52±3.26 57.12±4.23 64.32±3.42

outdoor_scene
NMI 40.01±1.04 11.90±0.55 37.33±0.95 37.95±0.85 50.36±0.24 52.01±1.08 36.03±0.98 43.42±0.72 53.09±0.87

ARI 28.21±0.57 6.68±0.34 25.07±1.09 25.48±0.81 40.19±0.41 42.41±1.04 23.57±1.78 34.29±1.46 43.35±1.17

Fscore 37.79±0.48 19.43±0.76 35.04±1.01 35.49±0.71 47.95±0.41 49.88±0.77 34.01±1.59 42.77±1.18 50.73±0.84

ACC 45.30±1.93 32.91±1.39 40.59±1.94 53.55±2.93 59.69±3.70 60.24±3.26 54.71±3.02 61.20±4.59 66.91±3.43

ORL
NMI 66.81±1.65 55.29±1.35 62.58±1.02 73.61±1.68 77.36±1.37 78.09±1.73 73.22±1.88 78.59±2.11 82.17±1.59

ARI 28.99±2.07 14.58±1.27 23.67±1.54 39.27±2.98 46.84±2.43 47.80±3.47 39.26±2.90 49.02±4.14 55.23±3.86

Fscore 30.96±1.97 16.95±1.20 25.68±1.49 40.92±2.86 48.21±2.35 49.13±3.36 40.82±2.81 50.31±4.02 56.36±3.75

ACC 39.86±2.25 45.12±3.56 48.26±8.61 51.53±6.84 62.13±8.57 50.19±8.92 59.26±7.33 57.42±9.94 62.07±8.51

BBCSport
NMI 9.24±3.69 16.01±4.36 22.52±6.17 31.01±11.91 43.16±10.40 24.49±11.88 44.43±9.16 37.07±7.96 43.79±12.25

ARI 2.77±2.43 8.81±1.78 11.64±7.30 18.47±13.24 35.58±13.90 17.50±13.27 29.76±17.01 25.45±13.76 33.56±14.14

Fscore 39.27±0.09 41.70±1.29 41.96±3.82 46.20±7.13 56.20±12.58 45.74±7.04 51.21±10.47 48.96±9.78 54.14±10.98

ACC 72.39±7.34 79.17±6.80 73.53±4.73 85.22±5.91 87.75±5.42 85.99±8.29 86.71±6.94 84.63±8.04 87.46±5.84

handwritten
NMI 69.55±3.14 76.97±3.14 71.34±2.21 82.42±4.38 85.17±3.01 83.96±4.83 85.15±3.90 81.84±3.49 83.77±3.58

ARI 60.49±5.05 70.29±6.05 62.90±3.57 76.25±7.60 81.20±6.35 79.31±6.74 81.16±6.85 77.69±6.65 79.78±4.79

Fscore 64.66±4.47 73.38±5.37 66.74±3.17 78.73±6.75 83.14±5.63 81.47±7.78 83.12±6.35 80.02±5.88 81.84±4.25

ACC 67.86±4.10 55.79±5.19 70.59±6.63 76.87±1.50 75.37±8.65 76.92±5.86 73.77±0.22 74.31±2.85 77.51±0.66

WebKB
NMI 37.63±3.49 12.14±5.56 40.79±4.41 43.07±3.00 48.90±5.84 48.06±3.59 40.22±4.71 45.87±5.21 48.95±4.75

ARI 40.45±5.80 10.35±8.11 46.08±4.75 52.68±11.71 55.83±10.99 57.23±7.84 43.35±5.53 55.14±4.41 55.85±3.01

Fscore 64.48±2.18 54.89±0.66 66.74±4.18 72.95±4.97 73.34±8.18 74.80±5.82 65.55±0.29 73.07±3.30 74.17±1.97

ACC 39.79±2.65 43.64±2.69 41.45±2.97 49.91±4.89 48.33±4.74 54.42±5.97 50.94±4.60 55.15±8.14 62.33±4.15

yale
NMI 47.03±2.81 49.28±2.90 46.14±1.75 54.58±4.46 56.42±3.77 60.06±4.49 57.05±3.14 60.89±6.29 66.20±3.07

ARI 19.48±2.95 23.26±1.92 18.67±2.43 30.03±5.16 31.76±4.38 36.48±5.51 31.79±3.76 37.42±8.48 43.55±5.13

Fscore 25.33±2.43 28.60±1.78 24.21±2.23 34.84±4.72 36.59±3.87 40.78±6.47 36.59±3.33 41.68±7.83 47.29±4.72

ACC 43.22±4.47 42.01±6.40 49.82±7.33 46.63±5.63 50.06±7.08 47.49±9.09 44.88±5.99 49.26±7.33 52.16±8.78

3sources
NMI 20.19±6.33 17.70±7.24 25.95±9.05 29.00±8.86 33.41±7.38 26.03±8.94 30.34±4.51 28.70±7.76 31.47±7.51

ARI 6.24±8.46 6.20±8.14 15.08±11.80 14.22±11.25 20.56±12.41 13.60±15.17 13.17±6.98 18.20±14.10 24.45±15.13

Fscore 36.46±1.06 36.73±3.89 41.85±7.55 40.25±6.49 44.07±8.10 42.04±7.49 38.17±2.15 43.28±7.97 48.11±8.11

ACC 53.48±2.12 61.27±6.67 54.79±5.70 65.14±2.82 59.58±4.12 61.09±1.12 56.84±1.50 58.46±0.92 63.24±9.28

Caltech101-7
NMI 32.91±1.80 54.47±3.96 32.69±1.53 37.78±1.57 51.08±3.73 51.07±2.51 35.24±1.12 47.38±4.16 55.20±5.12

ARI 31.76±3.27 50.19±7.47 39.67±4.45 53.75±3.09 51.08±0.67 51.41±0.28 46.99±0.40 48.15±0.53 61.89±3.01

Fscore 50.96±3.66 63.46±6.40 56.13±4.26 68.74±2.51 68.04±0.25 68.20±0.18 64.74±0.29 65.53±0.25 74.12±2.50
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Fig 2: The ACC for different datasets with varying numbers of selected features across different algorithms.

Table 4: A comparison of different methods’ runtime (in seconds) on nine real datasets.

Method 3sources BBCSport Caltech101-7 handwritten MSRCv1 ORL outdoor scene WebKB yale

LS 0.0328 0.0216 0.1000 0.0348 0.0088 0.1164 0.0873 0.012 0.0489

NSGL 1092.4439 106.0148 217.0699 6.6706 12.1167 3063.9216 51.7113 15.6533 3094.4092

CGMvFS 0.6235 0.8771 4.3808 6.7079 0.2167 1.5597 8.4180 0.2365 0.6392

TLR 52.1377 20.9521 37.7320 37.9590 1.2849 168.6236 72.2404 2.4695 89.9407

TRCA-CGL 77.6280 39.3632 58.0721 68.2363 1.9069 300.9628 102.3549 3.0358 178.5176

CDMvFS 14.8899 11.6000 88.0649 232.8406 0.7885 38.9397 276.3153 1.4592 34.0289

JMVFG 22.6183 18.4808 22.9048 25.6867 0.6527 79.9890 53.7736 1.5575 57.0595

SCMvFS 24.8455 14.5361 67.4799 162.3849 5.1582 52.2985 255.0909 6.3539 41.4304

UCDMvFS 21.8836 13.5236 113.9488 238.1430 1.3251 44.2950 338.6632 1.7661 37.8672
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Fig 3: The NMI for different datasets with varying numbers of selected features across different algorithms.
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the best or second-best performance. The TRCA, CDMvFS, JMVFG, and SCMvFS

methods also demonstrate the good performance. Figs. 2 and 3 illustrate the detailed

performance variations across different feature selection ranges. Our analyses are as

follows.

1. UCDMvFS demonstrates the strong performance on the two face datasets, out-

performing the second-best algorithm by 5.71%, 3.58%, 6.21%, and 6.05% on

ORL and by 7.18%, 5.31%, 6.13%, and 5.61% on yale across the four evaluation

metrics, respectively. In terms of ACC, our method achieves improvements of

2.4%, 1.51%, 0.59%, and 2.1% on the MSRC-v1, Outdoor-Scene, WebKB, and

3source datasets, respectively.

2. By comparing the results, we found that UCDMvFS did not show good perfor-

mance on the handwriting dataset, but TRCA-CGL, JMVFG and CDMvFS were

able to show good results. The comparison methods that performed better than

UCDMvFS all tried to find a consistent pseudo-label matrix, which means that

for the handwriting dataset, a view-invariant label matrix may be a better choice.

However, a view-invariant label matrix may ignore the unique information of

different views. Therefore, we propose to preserve the uniqueness of the label

matrix between multiple different views.

3. Among the compared algorithms, TRCA, CDMvFS, JMVFG, and SCMvFS can

show the best or second-best performance on a few datasets, indicating that these

methods are superior. However, compared with our method, tensor learning

methods such as TLR and TRCA ignore the influence of divergent information

between multiple views, and the latest graph learning methods such as CDMvFS,

JMVFG, and SCMvFS ignore the higher-order relevance information between

views and the cross-influence of information between different views. Overall,

our method is effective.

4. In terms of computational efficiency, NSGL takes the most time. In addition,

TLR, TRCA, CDMvFS, JMVFG, and SCMvFS also have large time costs on a

few datasets. Although our method is effective, it introduces significant com-

putational overhead due to the similarity matrix calculation or high-dimensional
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space optimization, resulting in an overall time complexity of O(n3 + n2V2 +

2n2V log(n)). This makes it difficult to apply to actual large-scale tasks.

5. By observing Figs. 2 and 3, we can find that on datasets with fewer features,

such as webkb and handwritten, selecting about 50 highly representative features

can achieve the best clustering effect and show strong dimensionality reduction

capabilities. On datasets with more features, the best clustering effect among all

the compared algorithms can be achieved within 300 features. Therefore, the

method we proposed is effective.
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Fig 4: Relative running time of multi-view methods.

To further compare algorithm’s performance, Table 4 presents the runtime of all

methods across nine datasets. It is observed that our method requires more computa-

tional time on datasets where the number of samples exceeds the number of features,

such as in the handwritten, Caltech101-7, and outdoor scene datasets. In contrast, it

requires less time on datasets where the number of features exceeds the number of

samples, such as ORL, 3sources, and yale. To illustrate the comparative results more

clearly, we selected fives of the most representative recent methods along with our

algorithm and plotted their runtime as bar charts, as shown in Fig. 4.
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4.5. Ablation Study

In order to study whether tensor learning can obtain more comprehensive infor-

mation, whether the ℓ2,1-norm of the feature selection matrix and the corresponding

constraints are effective, we conducted ablation experiments and studies. First, we

removed the tensor module in the UCDMvFS model and degenerated the model into

UCDMvFS.woT. Secondly, we changed the ℓ2,1-norm in the UCDMvFS model to the

F-norm and removed the corresponding constraints to form UCDMvFS.H.F-norm. The

experimental results are shown in Table 5. From the data in the table, it can be seen

that the more views the dataset has, the more obvious the effect of tensor learning is.

On datasets with a small number of views, tensor learning can also improve certain

performance. As for the effectiveness of the feature selection matrix constraints, it can

be clearly seen from the table that the ℓ2,1-norm is better than the F-norm. Therefore,

both tensor learning and the ℓ2,1-norm can effectively improve the performance of the

algorithm.

(a) MSRCV1 (b) outdoor scene (c) ORL

(d) BBCSport (e) handwritten (f) WebKB

(g) yale (h) 3sources (i) Caltech101-7

Fig 5: Effect of different values of α for clustering performance.
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Table 5: Ablation studies on different datasets.

Datasets Method ACC NMI ARI Fscore

UCDMvFS.woT 82.14±7.08 76.54±8.01 69.28±8.73 73.79±7.27

MSRC_v1 UCDMvFS.H.F-norm 69.12±6.07 62.54±4.06 52.57±7.08 59.50±5.55

UCDMvFS 85.69±8.71 80.78±6.64 75.26±9.68 78.81±8.20

UCDMvFS.woT 59.75±3.85 51.36±2.16 40.41±2.44 48.27±2.10

outdoor_scene UCDMvFS.H.F-norm 36.23±3.32 21.20±3.67 15.18±3.02 27.72±2.37

UCDMvFS 64.32±3.42 53.09±0.87 43.35±1.17 50.73±0.84

UCDMvFS.woT 65.08±3.25 81.13±2.42 53.30±5.35 54.50±5.18

ORL UCDMvFS.H.F-norm 42.25±2.32 64.52±2.29 25.33±3.05 27.46±2.88

UCDMvFS 66.91±3.43 82.17±1.59 55.23±3.86 56.36±3.75

UCDMvFS.woT 61.55±10.68 43.38±12.85 34.27±13.86 54.43±8.44

BBCSport UCDMvFS.H.F-norm 54.74±8.92 36.30±8.91 23.92±12.46 48.00±7.27

UCDMvFS 62.07±8.51 43.79±12.25 33.56±14.14 54.14±10.98

UCDMvFS.woT 84.04±6.26 82.79±2.89 78.20±5.06 80.47±4.47

handwritten UCDMvFS.H.F-norm 76.51±5.90 73.24±2.79 65.92±5.48 69.43±4.87

UCDMvFS 87.46±5.84 83.77±3.58 79.78±4.79 81.84±4.25

UCDMvFS.woT 77.00±1.57 42.88±5.95 55.95±3.21 74.29±2.01

WebKB UCDMvFS.H.F-norm 74.83±4.11 39.96±3.32 47.63±7.55 69.22±5.28

UCDMvFS 77.51±0.66 48.95±4.75 55.85±3.01 74.17±1.97

UCDMvFS.woT 62.06±3.72 65.31±3.87 41.56±5.61 45.54±5.14

yale UCDMvFS.H.F-norm 38.97±2.54 45.93±2.58 18.50±2.84 24.46±2.43

UCDMvFS 62.33±4.15 66.20±3.07 43.55±5.13 47.29±4.72

UCDMvFS.woT 47.04±8.21 29.07±6.97 15.37±13.64 41.43±8.32

3sources UCDMvFS.H.F-norm 51.98±7.24 31.88±5.03 20.70±9.06 44.71±7.83

UCDMvFS 52.16±8.78 31.47±7.51 24.45±15.13 48.11±8.11

UCDMvFS.woT 60.03±3.67 48.70±4.33 49.64±6.44 66.45±5.94

Caltech101-7 UCDMvFS.H.F-norm 54.56±1.51 33.88±1.14 33.12±1.25 52.60±1.53

UCDMvFS 63.24±9.28 55.20±5.12 61.89±3.01 74.12±2.50
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(a) MSRCV1 (b) outdoor scene (c) ORL

(d) BBCSport (e) handwritten (f) WebKB

(g) yale (h) 3sources (i) Caltech101-7

Fig 6: Effect of different values of β for clustering performance.

4.6. Parameter sensitivity

To further evaluate the performance of the proposed algorithm, we conducted pa-

rameter sensitivity experiments. For parameters α and β, we examined their impact on

the model’s performance by fixing the other three parameters at their median value of

1. Similarly, for parameters λ and η, we explored their influence by setting α and β to

1 while fixing the number of selected features at 150. The parameter sensitivity results

are visualized using 3D bar charts, as shown in Figs. 5, 6, and 7.

We observed that variations in parameters λ and η have minimal impact on the

model’s performance. The model is more sensitive to parameter α, indicating that it

should be adjusted based on the specific dataset. In contrast, parameter β should be set

to a relatively small value to achieve the optimal model performance.

4.7. Convergence Study

This section further validates the model’s convergence through experimental re-

sults. Fig. 8 illustrates the variation in the objective function value with the number
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(a) MSRCV1 (b) outdoor scene (c) ORL

(d) BBCSport (e) handwritten (f) WebKB

(g) yale (h) 3sources (i) Caltech101-7

Fig 7: Effect of different values of λ and η for clustering performance.

of iterations for UCDMvFS across nine datasets. As shown in the figure, the objec-

tive function stabilizes within the first six iterations, indicating the rapid convergence.

Although the convergence performance of the Caltech101-7 dataset increases slightly

from three to five iterations, which may be due to reaching a local minimum rather

than a global minimum, it eventually converges. Thus, the model’s convergence is

effectively confirmed.

5. Conclusion

In this paper, we employ a unified module to jointly measure multi-view consis-

tency and diversity, thereby obtaining the pure graph for each view. These pure graphs

are then fused to generate a consensus graph, with the optimal pure graphs learned

through mutual constraint and promotion via self-weight learning and latent represen-

tation. Additionally, we propose using low-rank tensors to capture high-order graph

structure information across multiple views. Finally, feature selection is performed
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Fig 8: The convergence curves of the UCDMvFS algorithm on nine datasets.

alongside structural learning. These methods are seamlessly integrated within a sin-

gle model framework, and the objective function is minimized using ADMM. This

method has potential for data cleaning and data screening in medical imaging, com-

puter vision, and media data applications. We found that unified measurement learning

can effectively promote mutual learning between graphs, while tensor learning can ex-

plore high-order correlations between views and fully utilize the advantages of multiple

views to improve model capabilities. The ℓ2,1-norm maintains the sparsity of the se-

lected features and greatly reduces the interference of redundant information. In future

work, we will focus on addressing the issue of parameter sensitivity, optimizing the

inference speed, and reducing the memory footprint of the model for deployment on

edge devices will be an important next step. Moreover, the pre-defined local structure

similarity graph limits its ability to adaptively capture and describe local relationships

in the data. Exploring how to dynamically update this graph will be a key direction for

future research.
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