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Highlights
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Yu-Jie Xiong, Jian-Xin Ren, Dong-Hai Zhu, Xi-Jiong Xie, Xi-He Qiu

e We propose a Pairwise Attention (PA) mechanism that is highly efficient for pairwise signature verification. Pairwise
attention facilitates bidirectional information exchange between reference and query signatures without introducing
any additional assumptive temporal information.

e We adopt the Q — R branches approach to establish input symmetry, ensuring that the input order is not affected for
both sequences. This innovated method involves leveraging the Q and R branches to create a balanced and symmetrical
input structure, thereby preserving the integrity of the input order in both reference and query sequences.

e We conduct extensive comparative and ablation experiments, demonstrating that our proposed method significantly
outperforms other state-of-the-art (SOTA) methods on existing datasets. This indicates the generalizability of our
approach to signature verification across different languages. Furthermore, we investigated the influence of background
factors in the CEADAR dataset.
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ABSTRACT

Signature verification has shown tremendous potential as a reliable biometric in both academic
research and industrial applications. With the advent of deep learning, signature verification has
made remarkable progress in the past decade. However, despite significant progress, the challenge of
detecting subtle differences between genuine and forged signatures, leading to concerns over privacy
protection and data security of the signature verification system. Recently, the tremendous success of
transformers in Natural Language Processing has led to their extension to computer vision, resulting
in significant advancements. The multi-head self-attention mechanism is considered crucial for the
success of transformer. As the name implies, its query, key, and value all originate from the same
sequence, rendering it suitable for single input tasks. However, pairwise signature verification treats
reference and query signature images equally as two independent inputs. Regarding this matters, the
mere amalgamation of the two independent inputs in the form of a single sequence inevitably gives rise
to potential inherent issues. To tackle this problem, we present a Pairwise Attention (PA) mechanism
that keeps the symmetry of inputs. Unlike the original attention mechanism, pairwise attention facili-
tates bidirectional information exchange between reference and query signatures without introducing
any additional assumptive temporal information. Subsequently, combing with the architecture of Swin
Transformer, we propose Pairwise Attention Swin Transformer(PAST). Our method fundamentally
solves the problem of introducing false assumptive temporal information during the process of input
fusion, but also performs impressively on several public datasets. Experimental results show that
PAST outperform most existing methods. In addition, we investigated the impact of background
information from the CEDAR database on the results. The study revealed that including background
information in the training data significantly improved the results compared to when background
information was not included.

1. Introduction

objective of signature verification is to distinguish between
genuine signatures and forged ones. According to the de-

Pairwise signature verification plays an essential role in
biometrics. Instead of comparing a single signature against
a writer-dependent reference model, as the traditional sig-
nature verification, pairwise signature verification involves
comparing two signatures equally to determine whether they
are generated by the identical writer.

Signature verification is a vital area in biometrics with
broad practical applications, including finance, justice, in-
surance, and criminal investigations [14]. In particular,
incorporating swarm intelligence-based task scheduling [38]
and learning-based cloud server configuration [6], the con-
sideration of handwritten signature authentication is ex-
plored, providing an additional layer of security for IoT
devices. However, it is a challenge due to difficulties in
signature sample collection, sparse features, and small inter-
class variability. Moreover, changes in the writing style of
the same person over time further complicate the task. The
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gree of imitation, there are three different types of forged
signatures: random forgery, simple forgery, and skilled
forgery [11]. Random forgery involves using a signature
sample from a different individual, whereas simple forgery
denotes a signature sample that mimics the handwriting of
the genuine author’s name. On the other hand, skilled forgery
entails a practiced imitation of the authentic signature.
Depending on the signature acquisition mode, signature
verification can be categorized into two types: online and
offline [18]. The online approach is not widely available
due to the complex application scenario and the requirement
of specialized equipment, although it contains abundant
state and positional information such as location, velocity,
and pressure. On the other hand, offline signature verifica-
tion involves obtaining signature samples by scanning or
photographing paper documents. The offline approach has
the advantages of low equipment requirements and content
limits compared to the online approach, making it more
practical for a broader range of applications and research
studies. However, the lack of dynamic information in offline
signatures poses a challenge in achieving good verification
performance [10]. This paper focuses mainly on the offline
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approach. For convenience, all signature verification meth-
ods mentioned here refer to offline signature verification
unless otherwise specified.

Nowadays, the prevailing approaches for signature veri-
fication often simplify multiple one-to-one match into a one-
to-many recognition or classification. This simplification
works well in scenarios involving single-input verifica-
tion and enhances the system speed. However, when it
involves pairwise inputs, it poses a serious issue that is
easily overlooked. In theory, an ideal verification model
should yield identical output results for pairwise inputs
(A, B) and pairwise inputs (/3,.A). However, for the mul-
ticlassification model, pairwise inputs (A, 3) (denoted as
{aj,...,an}, {by,.... by }) are often treated as two-channel
images, which are concatenated to form a composite tensor
(denoted as {ay,...,ay,b;,...,by}) for subsequent com-
putations. This process introduces additional sequence infor-
mation that is not originally present. As a result, with the in-
vented temporal sequence, the symmetry of pairwise inputs
isdisrupted ({ay, ..., an, by, ..., by} # {by,....by.ay, ...,
ay}), leading to potential differentials in output results,
which are unreasonable and unacceptable.

To address this issue, we propose an pairwise-attention
mechanism. It is performed to steer the model to constantly
exchange information between reference and query signa-
tures for producing the new respective feature maps. The
new feature maps contain not only the characteristics of ref-
erence and query signatures but also reflect their importance
relative to each other. As a result, it is more applicable to sig-
nature verification. Our experiments on five datasets demon-
strate that Pairwise Attention Swin Transformer achieves
significant performance enhancements compared to existing
methods, making it a promising approach for signature veri-
fication. The main contributions of this paper are as follows:

e We propose a Pairwise Attention (PA) mechanism that
is highly efficient for pairwise signature verification.
Pairwise attention facilitates bidirectional informa-
tion exchange between reference and query signatures
without introducing any additional assumptive tempo-
ral information.

e We adopt the O — R branches approach to establish
input symmetry, ensuring that the input order is not
affected for both sequences. This innovated method
involves leveraging the Q and R branches to create
a balanced and symmetrical input structure, thereby
preserving the integrity of the input order in both
reference and query sequences.

e We conduct extensive comparative and ablation exper-
iments, demonstrating that our proposed method sig-
nificantly outperforms other state-of-the-art (SOTA)
methods on existing datasets. This indicates the gen-
eralizability of our approach to signature verification
across different languages. Furthermore, we inves-
tigated the influence of background factors in the
CEADAR dataset.

2. Related Work

2.1. Signature Verification

Signature verification is a complex task that involves dif-
ferentiating genuine signatures from forged ones. Traditional
approaches typically consist of three main steps: prepro-
cessing, feature extraction, and classification. Preprocessing
is the first step in signature verification, where operations
such as edge detection, binarization, and skew correction
are performed to preprocess the raw signature images and
obtain a more suitable form. Feature extraction plays a
vital role in signature verification, as it aims to learn rele-
vant representations that can effectively distinguish complex
stroke features. In the final step, learning based classifiers
are used to determine whether a signature is genuine or
forged, based on extracted features. Traditional handcrafted
feature-based methods heavily rely on the prior knowledge,
struggling to identify signatures written in different styles or
orientations. Deep learning methods can automatically learn
discriminative features from raw data, including signatures
with varying styles and structures.

There are two mainstream methods for signature ver-
ification in the field of deep learning: Siamese-network-
based and two-channel-based architectures. Siamese neural
networks, initially proposed by Bromley et al. [2], employ a
weight-sharing mechanism where two identical subnetworks
share parameters. They are particularly useful for comparing
the similarity or dissimilarity between two inputs. One of
the key advantages of the Siamese architecture is its order
independence, as swapping the order of the signatures being
compared does not impact the final result. In the context
of signature verification, Siamese networks can assess the
similarity between two signatures. For example, Xiong et
al. [36] proposed Multiple Siamese Network (MSN) with
four parallel branches, incorporating an attention module to
extract salient features from handwriting. Similarly, Ghosh
and Rajib [9] employed a two-branch Recurrent Neural
Network (RNN) with Long Short-Term Memory (LSTM)
to extract rich structural and directional features for sig-
nature verification. Likewise, Shen et al. [27] combined a
one-dimensional Multi-scale Residual-based Siamese Neu-
ral Network (1D-MSNet) and adaptive boosting softmax
classification, makeing the network pay more attention to the
information of important feature sequences. Additionally,
Victoria Ruiz et al. [25] used Siamese Neural Networks
to address off-line handwritten signature verification with
random forgeries, augmenting the training set with synthetic
data.

2.2. Vision Transformers

The Transformer architecture, originally developed for
natural language processing, has been adapted for computer
vision tasks. Vision Transformer (ViT) [8] is one of the most
significant developments in this area. Several approaches
have emerged in the area of Vision Transformers. The Data-
efficient Image Transformer (DeiT) [31] aims to reduce
reliance on large datasets through distillation techniques
and has achieved state-of-the-art performance on benchmark
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datasets like ImageNet. The Swin Transformer [19] is a
hierarchical ViT that reduces computation by partitioning
windows and has shown competitive performance on various
benchmarks. RegionViT [4] utilizes region-based attention
mechanisms to capture spatial dependencies in images and
outperforms other methods on benchmark datasets. Deep-
ViT [37] a depth-wise block to replace the traditional multi-
head self-attention mechanism, resulting in improved accu-
racy and reduced parameters. Pyramid ViT [33] proposes
a pyramid-style architecture with multi-scale feature rep-
resentation and performs well on benchmarks, especially
for tasks involving smaller objects. The evolution of Vision
Transformers is an exciting and innovative research area in
computer vision, offering the potential to propel the field
forward in new and groundbreaking ways. In the field of
signature verification, vision transformers are playing an
increasingly important role. Li et al. [17] proposes a model
based on vision transformers, TransOSV, which significantly
enhances offline signature verification by effectively inte-
grating global and discriminative local features. Chu et al.
[5] proposes a novel Multi-Size Assembled-Attention Swin-
Transformer network that leverages self-attention and cross-
attention mechanisms for authenticating signature handwrit-
ing. Wei et al. [34] proposes the inverse discriminative
network (IDN) for handwritten signature verification, em-
ploying a novel multi-path attention mechanism across dis-
criminative and inverse streams to enhance focus on signa-
ture strokes. However, there are still several challenges that
need to be addressed, such as improving the interpretability
and robustness of Vision Transformers, developing more
efficient training and optimization techniques, and exploring
their potential for other computer vision tasks beyond object
recognition.

In the task of signature verification, the self-attention
mechanism has certain limitations. The original self-attention
mechanism is designed to handle individual input sequences
and may face challenges when dealing with paired signa-
ture inputs.These limitations include: (1) The self-attention
mechanism treats each element in the input sequence as
queries, keys, and values, and computes attention scores
between them. However, this unidirectional attention mech-
anism is limited in capturing the interdependencies between
input sequences. In signature verification, where the mu-
tual dependencies and correlations between signatures are
crucial, the self-attention mechanism falls short in directly
modeling such interdependencies. (2) The self-attention
mechanism independently processes each input sequence
without direct information exchange or communication. As
a result, important spatial or sequential patterns between
input signatures may not be effectively utilized during the
feature extraction stage. This limitation hampers the self-
attention mechanism’s ability to fully leverage significant
spatial or sequential patterns in signature verification tasks,
leading to suboptimal feature extraction. In contrast, our pro-
posed Pairwise Attention Swin Transformer (PAST) method
addresses these limitations by introducing the pairwise-
attention mechanism.

To address the issues caused by the framework and self-
attention mentioned above, we propose the Pairwise Atten-
tion Swin Transformer (PAST). It introduces the pairwise-
attention mechanism, which allows both inputs to partici-
pate in the attention mechanism and better focuses on their
correlation. This attention mechanism allows the model
to selectively focus on different regions of the input fea-
ture image and facilitate information exchange between in-
put feature signatures during the feature extraction process.
Compared to unidirectional self-attention mechanism’s, the
pairwise attention mechanism captures the interdependence
between input sequences more effectively, improving the
performance of signature verification tasks. Additionally,
PAST facilitates information exchange and weight sharing
between input feature signatures, enhancing feature extrac-
tion by utilizing spatial and sequential patterns within input
signatures. PAST improves the handling of correlation and
dependency between input signatures in signature verifica-
tion by using the pairwise-attention mechanism. In compar-
ison, we developed a Swin-Siamese and a Swin-2-channel
architecture using the Swin Transformer. Our results from
several signature datasets demonstrate that PAST outper-
forms these models and traditional self-attention mecha-
nisms, showcasing its efficacy in handling dependencies and
spatial-sequential patterns more effectively. This innovation
not only optimizes feature extraction but also mitigates the
negative impacts of signature order variations inherent in
two-channel systems.

3. Method

We present Pairwise Attention Swin Transformer (PAST),
with a designed architecture for signature verification, which
utilizes the pairwise-attention mechanism to keep the sym-
metry of pairwise inputs. An overview of the Pairwise
Attention Swin Transformer (PAST) is presented in Figure 1.
The network comprises two weight-shared branches, R and
0, dedicated to processing reference and query signatures,
respectively. For the R-branch, an input reference signature
with a size of H X W X 1 is first split into non-overlapping
patches with 4 X 4 pixels by the patch partition module,
transforming the inputs into sequence embedding. During
this process, the dimension of the feature map is extended to
48, and the feature spatial is reduced by 16Xx.

Our proposed pairwise attention swin transformer draws
structural inspiration from the Swin Transformer, maintain-
ing the use of four stages for propagation. In the Stage 1, each
patch undergoes linear projection to a higher-dimensional
embedding space using a learnable linear projection matrix
(linear embedding). The resulting patch embeddings, with
dimensions (HTGW,C), where C is the embedding dimen-
sion, are then processed by a series of branch fusion blocks.
Each block involves a multi-head pairwise-attention mech-
anism followed by a position-wise feed-forward network.
This mechanism facilitates bidirectional information transfer
between reference and query signatures, while the feed-
forward network introduces non-linearity to the attended
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Figure 1: The structure of the proposed Pairwise Attention Swin Transformer.

features. Each block outputs a sequence of patch embeddings
with the same dimension as the input, resulting in a feature
map with reduced spatial resolution and increased feature
dimension. Stage 2 is akin to Stage 1, but with the patch
partition module replaced by a patch merging module. This
module aggregates neighboring patches, producing a smaller
feature map with increased spatial resolution and reduced
feature dimension. The feature map is then processed by
another set of branch fusion blocks to extract more complex
features. In Stage 3, the input feature map is again processed
by a patch partition module to obtain a new set of patches.
These patches are then processed by a set of branch fusion
blocks to extract multi-scale features. The final stage of the
proposed architecture is similar to Stage 3, except that the
number of the branch fusion blocks. The output of this stage
is a set of high-level features that can be fused with the output
of the Q-branch and eventually fed into the decision layer
for determining whether two signatures belong to the same
person.

In contrast to the Swin Transformer, PAST diverges
significantly in the following aspects: (1) PAST employs O —
R branches approach to ensure input symmetry, providing
a foundational possibility for both input orders: reference
signature + query signature and query signature + reference
signature (as the fusion in the early stage makes it impossible
to distinguish later on); (2) In the case of independent
inputs, our proposed pairwise attention is utilized to achieve

symmetric attention computation; (3) Building upon the
discussed aspects, the branch fusion block is formulated by
combining these elements. Within the block, features from
the Q — R branches undergo processing through LayerNorm
(LN) layers, Window Multi-head Pairwise-Attention (W-
MPA), Multilayer Perceptron (MLP), and Shift Window
Multi-head Pairwise-Attention (SW-MPA), each using equal
weight.

3.1. Patch partition

In the PAST architecture, the step of patch partitioning
involves segmenting the input image, which is represented as
I € RIXWXC "where H, W, and C respectively represent
the image’s height, width, and number of channels. This
segmentation process transforms the image into a collec-
tion of smaller, discrete patches, each measuring P X P,
arranged to ensure there is no overlap, thus preparing the
image for sophisticated analysis. This segmentation creates
a grid of fixed-size patches, each acting as an individual unit,
streamlining the image’s complex structure into a simplified,
organized collection of data points.

3.2. Linear embedding
After the input image is partitioned into smaller, non-
overlapping patches of fixed dimensions P X P, each patch
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undergoes a transformation through linear embedding. Lin-
ear embedding is achieved by applying a linear transfor-
mation to the flattened pixel vectors of each patch. Specif-
ically, Linear Embedding projects the tensor with dimen-
sions (H /4 X W /4) x 48 onto an arbitrary dimension C,
resulting in a tensor with dimensions (H /4 X W /4) x C.
Furthermore, linear embedding imbues the patches with
positional information. In the absence of inherent sequential
data within images, unlike text, the pairwise transformer
relies on this embedding process to incorporate positional
encodings, enabling the model to understand the spatial
relationships between different patches of the image.

3.3. Patch merging

The Patch Merging layer serves as a downsampling
mechanism designed to reduce resolution and adjust the
number of channels, promoting a hierarchical structure while
conserving computational resources and minimizing infor-
mation loss. Each downsampling step reduces the sample
size by a factor of two, effectively halving the dimensions
in both the row and column directions. This reduction is
achieved by selecting elements at intervals of two, creating
a new patch from these elements. Subsequently, all the
newly formed patches are concatenated to form a single
tensor, which is then flattened. At this stage, the channel
dimension increases to four times its original size due to
the reduction in the height and width dimensions by half.
A fully connected layer then processes this expanded tensor
to adjust the channel dimension back to twice its initial size.
Patch Merging efficiently compacts the data and preserves
essential information through careful patch selection and
recombination. By expanding and then strategically reduc-
ing the channel dimension, the model maintains critical
features necessary for performance, optimizing both the data
structure and computational efficiency without significant
loss of information.

3.4. Pairwise-attention

The pairwise-attention mechanism is designed for pair-
wise verification tasks. It addresses the limitations of the
self-attention mechanism by taking into account both the ref-
erence and query signatures in the attention mechanism. This
enables effective capture of correlations and interdependen-
cies between the inputs. Figure 2 illustrates the internal
structure diagram of the complete pairwise-attention mecha-
nism. The dashed lines in the left half represent the attention
generation process from the reference signature to the query
signature, while the solid lines in the right half represent the
attention generation process from the query signature to the
reference signature. Similar to self-attention, each attention
generation requires three values, g, k, and v, to characterize
the relationship between the reference and query signatures.
In the context of our proposed pairwise-attention, we focus
on the dependencies between the query signature and the
reference signature. As depicted by the dashed lines in the
left half of Figure 2, the input features (reference feature R
and query feature Q) are first transformed into sequences
of g, k, and v using a linear layer. Similarly, the right half

of Figure 2 undergoes a transformation, but in this case,
it converts the reference feature and query feature into se-
quences of k, g and v. The reference and query features are
generated from the respective feature maps of the reference
and query signatures. The feature vectors for R and Q can
be represented as [ry,rp,73,....,7 5] and [q;, 42, g3, ... gn ],
respectively, where N represents the size of the spatial
dimension and C represents the number of channels. In this
scenario, the three vectors can be formalized as follows:

q'=L(R) ¢ =L(Q) ()
k;=Ly(Q) k.= L(R) )
v; = Ly(R) v, = L,(0) 3)

Where, L, and L, represent the linear layers, and R and
O (€ RE*N) represent the feature maps of the reference and
query signatures, respectively.

Next, the associations between the input R and Q are
modeled based on the interactions among attention ¢, k and
v. In the proposed pairwise-attention mechanism, the dot
product is used to establish the link between ¢ and k. After
applying a softmax layer, the attention map of g for k can be
formulated as follows:

Szg; , = Softmax(q; - k,") 4)

Sig},, = Softmax(k, - g1 ®)
T

§ - exp(Ly(R;) - Li(Q)") ©

TOE exp(Ly(R) - Ly@))T)

_exp(Ly(Q) - Li(R)T)
VXN exp(Li(Q) - Li(R)T)

where Sig;k represents the significance of ¢ for k, Sigl’cq
represents the significance of k for g, and Sl.’j represents the

@)

importance of the i vector in Q for the j* vector in R,
while Sl.’j represents the importance of the i’ vector in R for
the j™* vector in Q.

Finally, the interaction between the attention map matrix
Sigfi  Of SigI’(q and the global vector v is considered. To
capture the interactions, an element-wise product is used.
The formulation is as follows:

_ Softmax(L;(R) - L")

0 v
) T
Attery = =D ) 10y 0

Vi

represents the attention be-

Atteni,{

“Ly(R)  (8)

) r
where AttenRQ and AttenQR

tween R and Q, and +/d, is the scaling factor to stabilize
the gradients.
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Figure 2: The process details of pairwise-attention.

3.5. Branch fusion block

The branch fusion block follow the window shifted
and partitioning strategy of the Swin Transformer while
replacing the self-attention mechanism with the proposed
pairwise-attention mechanism. This ensures a fair compar-
ison with the Swin Transformer. The proposed window
multi-head pairwise-attention (W-MPA) and shift window
multi-head pairwise-attention (SW-MPA) correspond to the
window multi-head self-attention (W-MSA) and shift multi-
head self-attention (SW-MSA).

The lower part of Figure 1 shows the branch fusion
blocks. In Figure 1, we can observe two consecutive branch
fusion blocks. Block / consists of LayerNorm (LN) layers,
W-MPA, residual connections, and a 2-layer MLP. Block
I + 1 is similar to Block /, except that W-MPA is replaced
with SW-MPA. It is important to note that Block / and Block
I + 1 are executed alternatively and sequentially.

The computational procedure for an input feature in the
branch fusion blocks is as follows:

R, = W-MPA(LN(R)) + R (10)
R =MLP(LN(R,)) + R, (11)
R, = SW-MPA(LN(R)) + R (12)
R, =MLP(LN(R))) + R, (13)

where R, and R represent the output features of the (S)W-
MPA and the MLP module for Block 1, respectively. W-
MPA and SW-MPA represent window-based multi-head

pairwise-attention using regular and shifted window parti-
tioning strategies, respectively.

4. Experiments

In this section, we present several experiments that re-
flect the various aspects of the proposed method for es-
tablishing the authorship of offline handwritten signatures.
Additionally, we analyze the impact of signature background
on verification performance.

4.1. Datasets and experimental protocol

To demonstrate the effectiveness of the proposed PAST,
a series of experiments are conducted on five signature
datasets: CEDAR [30], BHSig-H & BHSig-B [22], UT-
Sig [29] and MCYT-75 [21]. The CEDAR dataset is a
well-known English offline signature dataset that includes
1,320 genuine and 1,320 forged signatures obtained from
55 writers, where each writer has 24 genuine and 24 forged
signatures. To simulate realistic conditions, all samples are
collected at different periods of time and in a fixed 2x2
inches space. The signatures are then digitized at 300 dpi
resolution and saved as PNG files. The BHSig260 database
comprises 6,240 genuine and 7,800 forged signatures from
260 individuals, which can be divided into two parts: BHSig-
H, a challenging Hindi dataset with 160 writers, and BHSig-
B, a publicly available Bengali dataset with 100 writers.
Each writer in both datasets provided 24 genuine signatures
and 30 forgeries, and the samples are obtained from people
with diverse educational backgrounds and ages to simulate a
real application scenario. UTSig is a Persian offline signature
dataset with 8,280 signatures from 115 writers. Each writer
has 27 genuine and 45 forged signatures. The dataset con-
siders variables such as signing period, writing instrument,
signature box size, and observable samples for forgers. All
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signatures are completed on A4-sized white forms, scanned
at 600 dpi in eight-bit grayscale, and saved in TIF format.
MCYT-75 is a Spanish offline signature dataset that includes
2,250 signatures from 75 individuals, with each individual
providing 15 genuine and forged signatures. The signature
samples are scanned at 600 dpi and saved as BMP files.

Table 1
Details of experimental protocol on different datasets

Dataset Writers of Writers ofpositive and negative pairs

Training  Test  trained per writer(P/N)
CEDAR 50 5 276/276
BHSig-H 100 60 276/276
BHSig:B 50 50 276/276
UTSig 60 55 351/351
MCYT-75 75 75 66,66

NOTE: To ensure the comparability of the data, our data
partitioning format is kept fully consistent with that of the
reference literature.

Our proposed method receives signature pairs as input,
which consist of genuine and forged signatures from writ-
ers. The signature pairs can be further partitioned into two
categories: positive pair and negative pair. The positive pair
comprises two genuine signatures, and the negative pair
consists of genuine and forged signatures. Both pairs are
composed of positive and negative samples, respectively. In
this case, for each writer with 24 genuine signatures and 30
forged signatures included in the BHSig-B dataset, there are
C224 = 276 genuine-genuine signature pairs (positive pairs)
and 24 x 30 = 720 genuine-forged signature pairs (negative
samples). To balance the positive and negative samples,
276 genuine-forgery pairs are randomly selected from each
writer to balance the similar and dissimilar classes. Like-
wise, for BHSig-H datasets, there are C224 = 276 genuine-
genuine signature pairs and 24 X 30 = 720 genuine-
forged signature pairs for each writer. For CEADR dataset,
there are C224 = 276 genuine-genuine signature pairs and
24x24 = 576 genuine-forged signature pairs for each writer.
For UTSig, there are C227 = 351 genuine-genuine and
351 genuine-forgery pairs per writer. The MCYT-75 dataset
differs from others in that 80% of signatures are randomly
chosen from each writer for training, while the remaining
signatures are utilized as testing samples. In the first case,
there are C122 = 66 genuine-genuine and 66 genuine-forgery
signature pairs each writer for training. In the second case,
there are twice (132) genuine-forgery signature pairs each
writer for training. The specific division is presented as Table
1. In order to minimize the bias of the results, all experiments
are repeated 5 times, and the corresponding average values
& standard deviations are also reported.

Evaluation of the proposed technique is measured through
four indices: false acceptance rate (FAR), false rejection rate
(FRR), Equal Error Rate (EER), and Accuracy (ACC). The
specific calculations are shown in the following formula:

FP

FAR= —
TN + FP

(14)

FN

FRR= ———
TP+ FN

as)

TP+TN
TN+FN+TP+FP

ACC = (16)

where T P (True Positive) is the number of correctly identi-
fied legitimate signatures, T N (True Negative) is the num-
ber of correctly identified forgeries, FN (False Negative)
is the number of legitimate signatures misclassified as forg-
eries, and F P (False Positive) is the number of forgeries
misclassified as legitimate signatures.

4.2. Ablation analysis of the proposed PAST

In this section, we ablate important design elements in
the proposed Pairwise Attention Swin Transformer (PAST),
focusing on the impact of different combinations of trans-
former blocks in PAST, different associated object values,
balanced and unbalanced training datasets, and two strate-
gies for fusing the two branches of output features. More-
over, all our ablation experiments were conducted on the
BHSig-B dataset for both training and testing.
Impact of the allocation of PAST Transformer blocks:

Because the PAST structure is divided into four stages,
we distribute the pairwise attention a mechanism across
these stages, resulting in configurations of 2-2-18-2, 6-6-6-6,
and 2-18-2-2, where each number in the sequence represents
the number of blocks assigned to the four stages in the
network. The results, as shown in Table 2, suggest that the
network achieves the highest performance with a 2-2-18-
2 block allocation, with a verification accuracy of 96.43%.
2-2-18-2 block allocation, with a verification accuracy of
96.43%. In the subsequent experiments, we keep the default
configuration of 2-2-18-2.

Table 2

Impact of allocating the number of branch fusion blocks
to each of the four stages in PAST on verification
performance

Stage 1 Stage 2 Stage 3 Stage 4 ACC

2 2 18 2 96.43
6 6 6 6 95.37
2 18 2 2 93.88

Impact of the value in the context of the interactive atten-
tion mechanism:

Specifically, based on the self-attention calculation method,
we represent the features generated in the attention pairing
as the actual input object. Here, Q represents the features
generated by the reference signature, while K represents
the features generated by the query signature. We studied
three different sequences of matrix-vector operations: (1) Q
vector multiplied by K matrix, then multiplied by O matrix;
(2) Q vector multiplied by K matrix, then multiplied by K
matrix; (3) Q vector multiplied by K matrix, then multiplied
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by the average of Q and K matrices, (Q + K)/2. The three
different operation sequences involve changing the content
of values, representing combinations of value vectors from
0O, K, and both Q and K. The results of this analysis, as
shown in Table 3, indicate that the network achieved the
highest performance when the value originated from the
reference signature feature map.

Table 3
Impact of different values on verification performance in
interaction attention mechanism

0] K 14 ACC
Reference 96.43

Reference Query  Query 95.06
(Reference+Query)/2  92.17

Impact of the sample balance on verification performance:
The results are presented in Table 4, which compares
the use of balanced and unbalanced training samples. The
Balanced Samples (B.S) method trained with an equal num-
ber of positive and negative samples exhibited superior
performance compared to the Unbalanced Samples (U.S),
which trained with negative samples twice as abundant as
positive samples. These findings suggest that the balance
between positive and negative samples significantly affects
verification performance, and utilizing balanced samples
during the training phase can lead to improved results.

Table 4
Verification performance comparison between Balanced
Samples (BS) and Unbalanced Samples (US) training
methods

Training Method FAR FRR ACC EER

BS 4.28 2.86
us 4.33 5.41

96.43 3.57
95.13 9.74

Impact of the fusion on two branches:

The first strategy, referred to as ’concat’, involves con-
catenating both branches prior to layer normalization. The
second approach, referred to as ’sum’, involves summing
the outputs of both branches. As illustrated in the Table
5, the ’sum’ strategy demonstrates superior performance
compared to the ’concat’ strategy. In general, the ’sum’
strategy generates a new feature that encapsulates some of
the key characteristics of the input features, although this
process may result in some information loss. On the other
hand, the ’concat’ strategy concatenates the input features
directly, allowing the model to learn how to effectively
handle them. However, this strategy is computationally de-
manding. Despite the varied results of these approaches in
the literature, we find that the *sum’ strategy are appropriate
for our method.

Table 5
Comparison of two strategies for fusing two streams of
output features

Fusion Strategy ACC FAR FRR ERR
Concat 95.81 4.02 4.36 4.19
Sum 96.43 2.86 4.28 3.57
Table 6

Performance comparison of pairwise-attention and self-
attention on multiple signature datasets

Model DATASET FAR FRR  ACC

Swin-Siamese 25.42 4.08 85.25
Swin-2-channel BHSig260-B  8.89 11.24 89.93
PAST 4.28 2.86 96.43
Swin-Siamese 13.06 17.08 84.93
Swin-2-channel BHSig260-H 12.45 14.71 86.42
PAST 5.50 4.20 95.26
Swin-Siamese 21.08 4.64 87.14
Swin-2-channel CEDAR 9.48 12.11 89.21
PAST 5.00 3.35 95.83
Swin-Siamese 23.69 24.47 75.77
Swin-2-channel UTSIG 27.34 19.29 76.68
PAST 22.08 22.18 78.87
Swin-Siamese 5.83 8.78 92.69
Swin-2-channel MCYT-75 5.42 6.34 94.11
PAST 0.84 1.48 98.83

4.3. Comparative study of PAST and Swin
Transformer under different frameworks

We further investigate the performance of pairwise atten-
tion and self-attention in signature verification. For fair com-
parison and optimal performance evaluation, we established
fixed configurations in both PAST and Swin Transformers.
Different numbers of transformer blocks were allocated at
each stage, and the final transformer block allocation was
set to 2-2-18-2. Additionally, the dimensionality of the input
features after the linear embedding layer in Stage 1 was set to
128. In the models using self-attention, we incorporate two
commonly used methods in signature verification, namely
the 2-channel and Siamese approaches for data modeling.
In the experiment, we maintain both Siamese-network-based
and two-channel-based architectures, employing the Swin
Transformer Block from the Swin Transformer and con-
figured as described above. This configuration aligns with
our PAST, having the same reference signature and query
signature inputs. As a result, we obtain two derived models
based on the Swin Transformer, namely Swin-Siamese and
Swin-2-channel. The experimental results, as demonstrated
in Table 6, based on five public datasets, show that the
PAST model outperforms the Swin-Transformer model on
all datasets. For example, on the BHSig260-B dataset, our
model achieves FAR of 4.28%, FRR of 2.86%, and ACC
of 96.43%, significantly outperforming the Swin-Siamese
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and Swin-2-channel models. Only on the UTSig dataset,
the Swin-2-channel model performs better than our method
in terms of FRR, but our method achieves superior results
in terms of FAR and ACC. These results indicate that the
proposed PAST model with pairwise attention performs
better than the Swin-Transformer model with self-attention
and can be applied to multiple signature datasets.

4.4. Comparisons with the state-of-the-art

We conducted a comparative analysis of the proposed
PAST against SOTA across five datasets. On each dataset,
PAST delivered outstanding verification performance.

Table 7
Comparison of the proposed PAST with existing meth-
ods on CEDAR

Model FAR FRR ACC EER
SigNet[10] 0 0 100.00 0
MSN[36] 3.18 0 98.40 1.63
2C25[23] 0 0 100.00 0
2C2L[15] - - 100.00 0
LQP[1] 5.01 6.12 - -
BFS[26] 4.67 4.67 - -
PAST 0 0 100.00 0
Table 8

Comparison of the proposed PAST with existing meth-
ods on BHSig-H

Model FAR FRR ACC  EER
SigNet[10] 1536 1536 84.64 1536
MSN[36] 1706 516 8888 11.31
LBP and ULBP[22]  24.47 2447 7553 2447
2C25[23] 866 9.98  90.68 9.32
2C2L[15] - - 86.66 13.34
SURDS|[3] 1201 898 8950 -
IDN[35] 899 493  03.04 -
AVN[16] - - 9432 565
PAST 550 420 95.26 4.85

As shown in the Table 7, almost all previous methods
achieved 100% ACC on CEDAR. Of course, we obtained
perfect results (zero error rate) on this database as well.
However, this situation forces us to consider the issue of
data bias or overfitting. We conducted an in-depth analysis
of this phenomenon in conjunction with the dataset (to
the best of our knowledge, this is the first time such a
detailed analysis has been conducted), and the details of the
analysis will be explained in the next section. The results in
Table 8 demonstrate that the proposed method outperforms
all other existing methods on BHSig-H. Specifically, the
previously best-performing method, AVN, has an accuracy
that is 0.94% lower than our method. According to Table
9, on BHSig-B, for the FAR, IDN has a slight advantage
over our method, with a margin of just 0.16%. However, our
method outperforms IDN in terms of ACC and FRR, with

Table 9
Comparison of the proposed PAST with existing meth-
ods on BHSig-B

Model FAR FRR ACC EER
SigNet[10] 13.89 13.89 86.11 13.89
MSN([36] 1042 6.44 9156 8.43
TransOSV([17] 9.90 9.90 - 9.90
2C25[23] 5.37 8.11 93.25 6.75
2C2L[15] 10.44 937  88.08 11.92
LBP and ULBP[22] 33.82 33.82 66.18 33.82
SURDS[3] 19.80 5.42 87.34 -
Ref.[12] - - 90.36 -
IDN([35] 412 524 9532 -
AVNJ16] - - 93.80 6.14
PAST 4.28 2.86 96.43 3.57
Table 10

Comparison of the proposed PAST with existing meth-
ods on UTSIG

Model FAR FRR ACC EER
Ref [29] 21.29 39.27 - -
Ref.[28] 9.00 32.42 - -

Ref [24] 3243 32.50 - -
Ref.[20] 29.49 7.88 - -
PAST 22.08 22.18 78.87 22.13
Table 11

Comparison of the proposed PAST with existing meth-
ods on MCYT-75

Model FAR FRR ACC EER
Ref.[29] - - - 8.50
Ref [1] 6.13 12.71 85.63 9.86
Ref.[13] 5.20 6.45 88.49 5.82
Ref .[7] - - - 9.12
Ref [32] 6.54 8.69 - 7.08
PAST 0.84 1.48 98.83 1.16

improvements of 2.38% and 1.11% respectively. Table 10
provides a comparison between the proposed PAST method
and existing methods on UTSIG. The results indicate that
while previous methods show good performance in terms of
FAR and FRR, our method still maintains a leading position
in each metric. Based on Table 11, our method on MCYT-75
achieves a FAR of 0.84%, an FRR of 1.48%, an accuracy of
98.83%, and an EER of 1.16%, significantly outperforming
previous methods.

4.5. The secret of achieving 100% accuracy on the
CEDAR

This section examines the impact of signature back-
ground on the performance of the CEDAR dataset. An
interesting phenomenon is observed during experiments on
the CEDAR dataset: when the model is trained on the
CEDAR dataset that includes backgrounds, it achieves 100%
accuracy. However, when the background is removed, the
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Table 12

Cross-Language validation results of PAST on different signature datasets

DATASET BHSig-B BHSig-H CEDAR UTSig MCYT-75
BHSig-B 94.29 76.40 51.63 54.24 46.88
BHSig-H 82.96 95.83 52.54 53.90 41.24
CEDAR 62.53 (50.00) 64.49 (50.00) 95.83 (100.00) 54.96(50.00) 44.75(50.00)
UTSig 56.50 51.22 82.46 78.87 55.64
MCYT-75 73.67 70.34 75.04 71.39 98.83

NOTE: The accuracy value in parentheses indicates the model's performance on the CEDAR dataset with background information

included, while the value outside parentheses shows performance without it.

Table 13
The impact of signature background on CEDAR dataset
performance

Model CEDAR FAR FRR ACC

Swin-Siamese 21.08 4.64 87.14
Swin-2-channel Without background 9.48 12.11 89.21

PAST 5.00 3.35 95.83
Swin-Siamese 0 0 100
Swin-2-channel With background 0 0 100
PAST 0 0 100
Genuine Forged
B
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Figure 3: The comparison of signatures before and after
processing.

validation performance of the model decreases. Table 13
is divided into two parts, one for models trained without
backgrounds and the other for models trained with back-
grounds. It shows the results of the experiment exploring
the impact of signature background on the performance of
the proposed PAST method and two methods using Swin
Transformer (Swin-Siamese and Swin-2-channel) on the
CEDAR dataset. For models trained without backgrounds,
the proposed PAST achieves the best performance with
a 5.00% FAR, 3.35% FRR, and 95.83% accuracy. Swin-
Siamese achieved a 21.08% FAR, 4.64% FRR, and 87.14%
accuracy, while Swin-2-channel achieved a 9.48% FAR,
12.11% FRR, and 89.21% accuracy. However, when models
are trained with backgrounds, an interesting phenomenon

is observed. All models achieve perfect performance with
a 0% FAR, 0% FRR, and 100% accuracy. This indicates
that the presence of background information in the training
data greatly benefits the model’s performance in recognizing
signatures. It should be noted that Swin-2-channel achieves
a significantly lower accuracy of 10% when trained with
backgrounds, which may be due to overfitting. An example
of the signature images before and after pre-processing is
presented in the Figure 3.

4.6. Cross-dataset validation

This experiment evaluates the generalization ability of
the proposed PAST across different languages. To assess
this, we conducted cross-language verification experiments
using five different language-specific signature datasets:
CEDAR, BHSig-B, BHSig-H, UTSig, and MCYT-75. The
experimental results were then represented using a confusion
matrix, where each row represents training on one dataset
and testing on different datasets. As shown in Table 12, the
results indicate that PAST performs well in intra-language
testing but experiences a decrease in performance in cross-
language testing due to dataset variations.In the case of the
CEDAR dataset, the model achieves the highest accuracy of
100% when trained with background information (indicated
in parentheses). However, when trained on the CEDAR
dataset without background and tested on other datasets, the
model fails to maintain a high level of accuracy, indicating
that it fails to make effective judgments and does not learn
any meaningful information about the signatures. This is
because the model only learns to differentiate the presence
or absence of background in signature images, rather than
learning any meaningful information about the signatures
themselves.

5. Conclusion

This paper introduces Pairwise Attention Swin Trans-
former (PAST), a novel approach for signature verification
that leverages the pairwise-attention mechanism tailored
for pairwise verification tasks. The experimental results
demonstrate that PAST outperforms both the baseline Swin
Transformer and existing methods across all five signature
datasets, achieving remarkable performance. These findings
underscore the significance of pairwise-attention in signa-
ture verification tasks, validating the effectiveness of PAST
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in capturing subtle differences between genuine and forged
signatures. The proposed PASTSs exhibits tremendous poten-
tial for practical signature verification applications, address-
ing the limitations of existing methods and leveraging the
innovative pairwise-attention mechanism. PAST paves the
way for precise and dependable signature verification, with
potential impacts on fields including document authentica-
tion, identity verification, and financial transactions.
Furthermore, our experiments highlight the substantial
impact of the pairwise-attention mechanism on the model’s
performance, with an increase in the number of branch
fusion blocks and the embedding dimension further enhanc-
ing accuracy. While the exploration of larger models was
constrained by hardware limitations, our research suggests
that investigating larger models holds the potential to further
amplify the efficacy of our pairwise-attention mechanism.
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