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Abstract

Existing visual token pruning methods target prompt alignment and visual preser-
vation with static strategies, overlooking the varying relative importance of these
objectives across tasks, which leads to inconsistent performance. To address this,
we derive the first closed-form error bound for visual token pruning based on the
Hausdorff distance, uniformly characterizing the contributions of both objectives.
Moreover, leveraging ϵ-covering theory, we reveal an intrinsic trade-off between
these objectives and quantify their optimal attainment levels under a fixed budget.
To practically handle this trade-off, we propose Multi-Objective Balanced Cov-
ering (MoB), which reformulates visual token pruning as a bi-objective covering
problem. In this framework, the attainment trade-off reduces to budget allocation
via greedy radius trading. MoB offers a provable performance bound and linear
scalability with respect to the number of input visual tokens, enabling adaptation
to challenging pruning scenarios. Extensive experiments show that MoB preserves
96.4% of performance for LLaVA-1.5-7B using only 11.1% of the original visual
tokens and accelerates LLaVA-Next-7B by 1.3-1.5× with negligible performance
loss. Additionally, evaluations on Qwen2-VL and Video-LLaVA confirm that MoB
integrates seamlessly into advanced MLLMs and diverse vision-language tasks.

1 Introduction

Multimodal large language models (MLLMs) have shown impressive performance across a variety of
vision-language tasks, including visual understanding [27, 24, 17], visual question answering [37,
14, 34], and visual-language reasoning [8, 44, 42]. Since visual data exhibits much higher spatial
redundancy than language, MLLMs are typically required to encode visual inputs as numerous tokens,
resulting in substantial computational overhead.

To address this issue, visual token pruning methods are proposed to accelerate MLLMs by selecting
representative subsets of visual tokens. Most pruning methods focus on two distinct objectives: Visual
Preservation (VP) [5, 7, 56, 43], which retains tokens by minimizing redundancy or maximizing visual
salience, and Prompt Alignment (PA) [55, 48, 45], which selects tokens most relevant to the prompt.
Recently, several multi-objective approaches [28, 48, 39] have been proposed to integrate VP and
PA through various complex strategies. Counterintuitively, these methods do not exhibit dominant
superiority compared to single-objective approaches, as shown in Figure 1(a). This observation
naturally raises a question: Does integrating different objectives offer fundamental advantages?

Inspired by this question, we formulate preservation using the Hausdorff distance between the original
and pruned token sets and derive the first closed-form error bound for visual token pruning (Lemma 1).
This bound depends on VP and PA, while it is also affected by a prompt-visual coupling, measured by
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Figure 1: (a) Comparison of single- vs. bi-objective pruning methods on LLaVA-1.5-7B at a 66.7%
pruning rate; (b) distribution of the prompt-visual coupling, revealing two distinct patterns across
various tasks: weak coupling (large distance) and strong coupling (small distance); (c) radar charts of
LLaVA-1.5-7B with visual tokens reduced from 576 to 192, 128, and 64 (left-to-right), demonstrating
the consistent improvements of MoB across 10 well-recognized benchmarks.

the Hausdorff distance between prompt and visual tokens. Notably, we identify two patterns of this
coupling across popular benchmarks, as presented in Figure 1(b): weak coupling with large distance
(e.g., TextVQA, POPE) and strong coupling with small distance (e.g., MMB, VizWiz). Our further
analysis reveals that the effectiveness of the pruning objectives varies under distinct coupling patterns
(Lemma 2). However, existing multi-objective methods overlook this variation and integrate VP and
PA via constant strategies, yielding inconsistent improvements over single-objective baselines.

To quantify the effect of prompt-visual coupling, we reexamine visual token pruning from a geometric
covering perspective. In this view, the retained tokens can be thought of as the union of two disjoint
covers for prompt and visual tokens, where each objective corresponds to a Hausdorff covering
radius, and the prompt-visual coupling is represented by the inter-cover diameter. By analyzing the
geometric relationship between the radii and the diameter, we reveal an intrinsic trade-off between
the two objectives (Theorem 1), which identifies the optimal attainment level of each objective to
achieve the performance ceiling under a fixed pruning budget and prompt-visual coupling.

For a practical solution to this trade-off, we propose Multi-objective Balanced Covering (MoB), a
training-free visual token pruning method with provable performance guarantees and multilinear
complexity (Theorem 2). MoB partitions the retained tokens into two disjoint subsets for PA and VP,
employing greedy radius-trading strategies to reduce the trade-off in objective attainment to a budget
allocation problem. This allows MoB to achieve the optimal balance under each coupling pattern
by selecting appropriate subset sizes. As shown in Figure 1(c), MoB consistently outperforms both
single-objective and multi-objective baselines by a clear margin at identical pruning rates. Besides,
MoB accelerates LLaVA-Next-7B by 1.3-1.5× with negligible performance loss. Ablation studies
further validate our theoretical analysis. Our key contributions are summarized as follows:

• To our knowledge, we present the first closed-form error bound for visual token pruning and its
practical relaxation, characterizing the contributions of the two objectives to preservation quality.

• We quantify the trade-off between the objectives and identify their optimal attainment level under
a fixed budget and prompt-visual coupling, offering valuable insights into visual token pruning.

• We propose Multi-objective Balanced Covering (MoB) for training-free visual token pruning, which
reduces the trade-off of objective attainment to a budget allocation problem via two greedy radius-
trading strategies, yielding both a provable performance guarantee and multilinear scalability.

• Extensive experiments across 14 public benchmarks demonstrate the superiority of MoB. For
instance, it retains 96.4% and 97.9% performance for LLaVA-1.5-7B and Video-LLaVA-7B with
an 88.9% reduction ratio, outperforming the second-best method by 2.7% and 1.6%, respectively.
MoB can also be readily incorporated into advanced MLLMs, such as LLaVA-Next and Qwen2-VL.
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2 Background

2.1 Related Work

Multimodal Large Language Model (MLLM). MLLMs [27, 18, 57, 25] have achieved remarkable
progress in vision-language reasoning, owing to their robust cross-modality modeling via attention
mechanisms [40, 31]. However, the spatial redundancy inherent in visual signals typically leads to a
large number of input tokens [22, 19, 26, 41], particularly in high-resolution images and multi-frame
videos (e.g., 2048 tokens in Video-LLaVA [24]). This issue exacerbates the quadratic scaling problem
of attention mechanisms, posing significant computational challenges. Moreover, to further enhance
the visual capability by incorporating high-quality details, advanced MLLMs are now designed to
support higher resolution images [21, 10, 9, 3], thereby necessitating the processing of even more
visual tokens (e.g., 2880 tokens in LLaVA-NEXT [26]). In these scenarios, effectively selecting
representative visual tokens becomes a critical requirement for the real-world application of MLLMs.

Visual Token Pruning. Due to the spatial redundancy, inputs to MLLMs contain numerous less
informative visual tokens. Visual token pruning accelerates MLLMs by selectively retaining only the
most critical tokens during inference. Existing methods typically focus on either visual preservation
(VP) [5, 35, 7, 49, 54, 29, 43] or prompt alignment (PA) [55, 48, 45]. VP-driven methods, such
as ToMe [5] and LLaVA-PruMerge [35], reduce redundancy by merging similar tokens, while
FastV [7] and FasterVLM [54] select tokens based on visual salience. PA-driven approaches like
SparseVLM [55] rely on cross-modal attention to identify prompt-relevant tokens. More recently,
MustDrop [28] integrates VP and PA through a multi-stage pruning pipeline, reporting notable
improvements. Despite these advances, existing methods largely overlook the varying relative
importance of VP and PA across different scenarios. In this paper, we formally characterize the
contribution of each objective under a fixed pruning budget, and propose an algorithm that balances
these objectives per scenario, yielding consistent improvements across diverse pruning conditions.

2.2 Preliminaries

Pipeline of MLLM. MLLMs perform vision-language reasoning by jointly processing multimodal
inputs in a shared representation space. Formally, given visual tokens V(1) extracted from the visual
inputs and prompt tokens P(1) encoded from user prompts, the multimodal input is defined as

X (1) = V(1) ⊔ P(1), V(1) = {v(1)1 , . . . , v
(1)
N }, P(1) = {p(1)1 , . . . , p

(1)
L } ⊆ Rd,

where N and L denote the numbers of visual and prompt tokens, respectively. We regard both V(1)

and P(1) as compact sets on d-dimensional Euclidean space (Rd, ∥ · ∥). The input X (1) is then fed
into a language model F[1,I] with I transformer block, and the final output is given by

y = F[1,I]

(
X (1)

)
where F[1,I] = fI ◦ fI−1 ◦. . .◦ f1,

In particular, each fℓ follows the standard Transformer (e.g., multi-head self-attention [40], layer
normalization [2, 47]). The intermediate feature for any layer ℓ ∈ {2, . . . , I} is defined as

X (ℓ) := F[1,ℓ−1]

(
X (1)

)
= V(ℓ) ⊔ P(ℓ), F[1,ℓ−1] := fℓ−1 ◦. . .◦ f1,

with V(ℓ) and P(ℓ) representing the visual and prompt tokens after ℓ−1 layers, respectively.

Visual Token Pruning. To accelerate MLLMs with minimal performance loss, visual token pruning
selectively removes less-informative visual tokens at chosen intermediate layers of the language
model F[1,I]. Specifically, for any chosen layer fℓ, ℓ ∈ {2, . . . , I}, pruning algorithms first select
a subset S(ℓ) ⊆ V(ℓ) of size K (i.e., pruning budget) and form the pruned input X (ℓ)

s = S(ℓ) ⊔ P(ℓ).
The corresponding output before and after pruning are then defined as

y = F[ℓ,I]

(
X (ℓ)

)
, ys = F[ℓ,I]

(
X (ℓ)

s

)
where F[ℓ,I] := fI ◦ · · · ◦ fℓ.

Finally, the objective of visual token pruning is formulated as

S(ℓ) ∗ = argminS(ℓ)⊆V(ℓ), |S(ℓ)|=K ∥y − ys∥2.

Notation. For brevity we omit the layer index (ℓ) and simply write X = V ⊔ P and Xs = S ⊔ P
to denote the input and its pruned counterpart at an arbitrary layer fℓ. We use F to denote any
composition mapping of the full model F[1,I]. Finally, we let ∥ · ∥ denote the Euclidean norm.
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Figure 2: Illustration of prompt-visual coupling with two distinct patterns: In fine-grained tasks (e.g.
POPE), only a few patches are critical, so the worst-case patch lies far from best-case ones, resulting
in a large Hausdorff distance and making prompt alignment valuable. In coarse-grained tasks (e.g.
MMB), many relevant patches contain the answer cues; thus, the worst-case patch remains close to
best-case ones, yielding a small Hausdorff distance and making visual preservation more efficient.

3 Methodology

3.1 Revisiting Visual Token Pruning: Insights into Prompt-Visual Coupling

As shown in Fig. 1(a), multi-objective pruning methods fail to achieve the expected improvements, and
objective-specific methods exhibit inconsistent performance across benchmarks. These observations
motivate us to reexamine the problem of visual token pruning. We begin by introducing Assumption 1,
which quantifies pruning performance in terms of the preservation of the original token set.
Assumption 1 (Lipschitz Continuity w.r.t. the Hausdorff Distance). Assume every partial composition
F (from layer ℓ to I) of the language model is Lipschitz continuous w.r.t. the Hausdorff distance with
constant Cℓ ≥ 1. Formally, for any intermediate token sets X ,Xs ⊂ Rd,

∥F(X )−F(Xs)∥ ≤ Cℓ dH(X ,Xs),

where dH is the Hausdorff distance induced by the Euclidean norm:

dH(X ,Xs) := max
{
supx∈X infxs∈Xs

∥x− xs∥, supxs∈Xs
infx∈X ∥x− xs∥

}
. (1)

Subsequently, we measure the preservation of the original token set X using three pairwise distances
among visual tokens V , retained tokens S, and prompt tokens P , thereby establishing a unified
performance bound for various visual token pruning algorithms, as presented in Lemma 1.
Lemma 1 (An Error Bound for Visual Token Pruning). Under Assumption 1, given any token set
with its pruned counterpart X = V ⊔ P, Xs = S ⊔ P ⊆ Rd, the pruning error bound is given by:

∥F(X )−F(Xs)∥ ≤ Cℓ max
{
min

{
dH(S,V), dH(V,P)

}
, min

{
dH(S,V), dH(S,P)

}}
.

Remark. Here dH(S,P) and dH(S,V) describe the prompt alignment and visual preservation,
while dH(V,P) is an inherent term that describes the prompt-visual coupling of input data.

Proof in Appendix E.1. By Lemma 1, in practical settings where |S| ≪ |V|, pruning performance is
governed by a non-trivial interaction among visual preservation, prompt alignment, and prompt-visual
coupling. However, existing multi-objective methods typically overlook the coupling term dH(V,P)
and statically combine the two objectives across tasks, limiting their effectiveness. Our empirical
evidence across popular benchmarks validates two distinct patterns of dH(V,P), each favoring
different pruning objectives, as shown in Figure 2. To further explicate the effect of prompt-visual
coupling, we introduce Assumption 2 and propose a practical relaxed error bound in Lemma 3.
Assumption 2 (Prompt-Visual Coupling Bound). We assume the input visual data and prompts
are not entirely unrelated; hence, there exists a constant η > 0 for any intermediate token set
X = V ⊔ P ⊆ Rd such that dH(V,P) ≤ η, ensuring the reasonability of vision-language reasoning.
Lemma 2 (A Relaxed Error Bound under Practical Budgets). Under Assumptions 1 and 2, let
X = V ⊔ P, Xs = S ⊔ P ⊆ Rd with |S| = K ≪ N . Partition the retained token set S into two
disjoint subsets: S = Sp ⊔ Sv, devoted to prompt alignment dH(Sp,P) and visual preservation
dH(Sv,V), respectively. Then, the pruning error bound reduces to

∥F(X )−F(Xs)∥ ≤ Cℓ max
{
dH(Sp,P), dH(Sv,V)

}
+ Cℓ η.
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Proof in Appendix E.2. As Lemma 2 indicates, under weak coupling (large η), most visual regions
are distant from prompt tokens in the semantic space. Consequently, if Sp misses the critical patches,
dH(Sp,P) dominates the pruning error, making the selection of Sp i.e., prompt alignment, more
significant. Conversely, under strong coupling (small η), dH(Sp,P) tends to decrease in tandem with
dH(Sv,V), reducing the marginal benefit of prompt alignment. To further guide pruning methods
design, we next quantify this trade-off governed by η through an ϵ-covering argument.

3.2 Quantifying Prompt-Visual Trade-Off: A Geometric Covering Perspective

We first introduce some geometric metrics in Definition 1, recasting each objective term dH(Sp,P)
and dH(Sv,V) as covering radii and the coupling term dH(V,P) as an inter-cover diameter. Next,
we relate each recasted objective to its token budget |Sp|, |Sv| via covering regularity in Lemma 3.
Finally, by loading the budget constraint and applying the triangle inequality between radii and
diameter, we derive a quantitative trade-off jointly governed by K and η in Theorem 1.
Definition 1 (ϵ-cover, Covering Number, and Covering Regularity). Let (Rd, ∥ · ∥) be the d-
dimensional Euclidean space and let X ⊆ Rd be a compact set.

(a) ϵ-cover. if there exists a finite set C = {c1, . . . , cM} ⊂ Rd, an ϵ-cover of X is given by

X ⊆
⋃

c∈C B(c, ϵ), B(c, ϵ) := {x ∈ Rd : ∥x− c∥ ≤ ϵ},
where C is the collection of covering centers, and ϵ is the covering radius.

(b) Covering number. The minimum cardinality of C is the covering number of X at raduis ϵ:

N (X , ϵ) := min
{
M ∈ N : ∃ C ⊂ Rd, |C| = M, X ⊆

⋃
c∈C B(c, ϵ)

}
.

(c) Covering regularity. We say that X satisfies d-dimensional covering regularity if there exist
constants 0 < A ≤ B and ϵ0 > 0 such that

Aϵ−d ≤ N (X , ϵ) ≤ B ϵ−d, ∀ ϵ ∈ (0, ϵ0].

Based on Definition 1(a) (b), Sp, Sv ⊆ V can be thought of as two collections of centers such that

P ⊆
⋃Kp

i=1 B(s
(i)
p , ϵp), V ⊆

⋃Kv

j=1 B(s
(j)
v , ϵv),

where the radii are given by ϵp := dH(Sp,P), ϵv := dH(Sv,V), and the covering numbers satisfy
N (P, ϵp) ≤ |Sp|, N (V, ϵv) ≤ |Sv|. Thereby, we derive a lower bound of the required budget,
i.e., |Sp|, |Sv|, to improve each objective, i.e., ϵp, ϵv, based on deff -dimensional covering regularity.
Lemma 3 (Covering Number Bounds). Gievn P,V ⊂ Rd with an effective dimension deff . Sup-
pose their δ-dilations Vδ :=

⋃
v∈V B(v, δ), Pδ :=

⋃
p∈P B(p, δ) (δ ≪ η) satisfy deff -dimensional

covering regularity; thus, there exist constants b>a>0, b′>a′> 0 and ϵ0>δ such that

a ϵ−deff
p ≤ N (P, ϵp) ≤ b ϵ−deff

p , a′ ϵ−deff
v ≤ N (V, ϵv) ≤ b′ ϵ−deff

v , ∀ ϵp, ϵv ∈ (δ, ϵ0],

Remark. Previous work suggests that both visual and language embeddings concentrate on a
low-dimensional manifold, so the effective covering dimension satisfies the typical relation deff ≪ d.

Proof in Appendix E.3. Lemma 3 demonstrates that once the radius (i.e., the objective) falls below
ϵ0, any further improvement of it demands a Θ(ϵ−deff ) increase in the number of selected token.

By loading Lemma 3 into the budget constraint: |Sp|+ |Sv|=K, and applying a two-step triangle
inequality between the covering radii ϵp, ϵv and the inter-cover diameter η, we establish a K-η-bound
in Theorem 1(b), which quantifies the trade-off governed by the budget and prompt-visual coupling.
Theorem 1 (Trade-off between Prompt Alignment and Visual Preservation). Under Assumption 2
and the covering-regularity hypothesis of Lemma 3 with constants a, a′, deff > 0, there exist a
radius-scaling factor z > 1 such that η/z > δ and K < N (P, η/z)+N (V, η/z), for every pruning
results S = (Sp ⊔ Sv) ⊆ V with budget K satisfying

max
{
D1K

−2/deff , D2 η
2
}
≤ dH(Sp,P) dH(Sv,V),

where D1 := (a a′)1/deff 41/deff > 0, D2 := 1/z2 > 0.
Remark (Optimal Attainment Level). The term D1 K

−2/deff is completely determined by the pruning
budget, while D2 η

2 quantifies the effect of prompt-visual coupling. The optimal attainment level per
objective is given by ϵ∗ = max{η/z,

√
D1 K

−1/deff}. Any attempt to reduce one objective below ϵ∗

forces the other above ϵ∗, thereby increasing the overall pruning error.

5



Remark (Effect of Budget and Coupling Strength). As K decreases, z correspondingly shrinks (D2

growing as a power function), ultimately making D2 η
2 dominate the bound; while as K increases,

both of the terms reduce, thereby diminishing the trade-off and tightening the overall error bound.

Proof in Appendix E.4. Theorem 1 characterizes the optimal attainment level for each objective
under a fixed pruning budget and prompt-visual coupling. However, it is actually very challenging to
dynamically determine the attainment level per objective during the pruning process. To address this,
we propose Multi-objective Balanced Covering, which leverages the monotonic relationship between
covering radii and numbers to reduce the trade-off of attainment to a budget-allocation problem.

3.3 Multi-Objective Balanced Covering: From Trade-Off to Budget Allocation

Motivated by the insights in §3.2, Multi-objective Balanced Covering (MoB) recasts visual token
pruning as bi-objective covering. Specifically, given a token set X = V ⊔ P ⊆ Rd with a budget K,
the retained token set S is defined as the union of a prompt center set Sp and a visual center set Sv:

S = Sp ⊔ Sv ⊆ V ⊆ Rd where P ⊂
⋃Kp

i=1 B(s
(i)
p , ϵp), V ⊂

⋃K−Kp

j=1 B(s
(j)
v , ϵv).

MoB then selects the cover centers (i.e., retained tokens) by minimizing the overall maximum radius:
(S∗p , S∗v) = argmin

Sp⊔Sv ⊆V, |Sp|=Kp, |Sv|=K−Kp

max{ϵp(Sp), ϵv(Sv)}.

In practice, MoB solves this problem approximately by two sequential greedy covering procedures:
selection of prompt center set Sp with budget Kp, and selection of visual center set Sv with the
remaining budget K −Kp. By the covering number bounds given in Lemma 3, we have

Kp = Θ(ϵ−deff
p ), K −Kp = Θ(ϵ−deff

v ),

where deff is the effective dimension of V , P . Accordingly, by selecting the unique budget Kp

(i.e., fixing the remaining budget K − Kp) under each coupling pattern, MoB ensures ϵp, ϵv =

Ω
(
max{η/z,

√
D1 K

−1/deff}
)
, thus yielding provable performance guarantees across scenarios.

Normalization. For efficiency, MoB applies L2 normalization to each x ∈ X so that ∥x∥ = 1. Hence,
for any token pair x1, x2 ∈ X , the Euclidean distance can be induced by their cosine similarity:

∥x1 − x2∥ =
√
2− 2 cos(x1, x2).

Selection of Prompt Center Set Sp. Since all sp ∈ V lie outside P , a typical solution for minimizing
the radius ϵp is Nearest-Neighbor covering (NN covering) [13], which uniformly allocates the nearest
sp ∈ V for each prompt token. However, the contribution of each prompt token is inequivalent,
especially under weak prompt-visual coupling; thus, equal allocation risks missing the “best-case
tokens.” To remedy this, we introduce a k-fold NN covering procedure. Formally, let L = |P| and
k > 1 be a hyperparameter; we first utilize a temporary budget of kL to form a candidate set.

S ′p =
⋃

p∈P arg topks∈V
(
cos(s, p), k

)
, |S ′p| ≥ Kp,

thereby over-sampling the k nearest visual tokens for each prompt token. Subsequently, we refine the
candidate set by selecting the final Kp centers that maximize their worst-case alignment with P:

Sp = arg topks∈S′
p

(
maxp∈P cos(s, p), Kp

)
.

By concentrating the limited budget on those visual tokens most strongly aligned with the key prompt
tokens, this strategy ensures a better preservation of the critical regions in the visual input. We
determine the appropriate k by ablation to avoid the oversampling of a few salient prompt tokens.

Selection of Visual Center Set Sv. Unlike the prompt center selection, each visual center sv lies
in V . Thereby, we employ Farthest Point Sampling (FPS) [33] on the remaining tokens, i.e., V \ S,
to select the visual centers, which makes the visual centers Sv well-spread over V , minimizing the
covering radius ϵv. Concretely, FPS operates by iteratively selecting the token farthest (i.e., the most
different) from the current centers S, where the distance is given by

distFPS(sv,S) = mins∈S(1− cos(sv, s)), ∀sv ∈ V \ S.
Subsequently, we initialize the visual centers with the empty set, i.e., S(1)v := ∅. We then successively
add the farthest visual token to the current centers S(i)v ⊔ Sp until it contains a total of K elements.
Hence, the visual centers at the subsequent iteration, S(i+1)

v , is given by:
S(i+1)
v = S(i)v ⊔ argmax

sv∈V\
(
S(i)
v ⊔Sp

) distFPS(sv, S(i)v ⊔ Sp), for i ∈ [1, . . . ,K −Kp].

More details of the proposed MoB algorithm are provided in Appendix B.
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Method Objectives
Strong Coupling Weak Coupling

Avg.
MMB MMBCN SQA VizWiz GQA MME POPE VQAT VQAV2 OCR

LLaVA-1.5-7B w/o Pruning, N = 576; Token Reduction Rate = 0.0%
Vanilla [25] - 64.7 58.1 69.5 50.0 61.9 1862 85.9 58.2 78.5 297 100%

LLaVA-1.5-7B Pruning budget K = 192; Token Reduction Rate = 66.7%
FastV (ECCV’24) [7] VP 61.2 57.0 67.3 50.8 52.7 1612 64.8 52.5 67.1 291 91.2%
SparseVLM (ICML’25) [55] PA 62.5 53.7 69.1 50.5 57.6 1721 83.6 56.1 75.6 292 96.3%
MustDrop (24.11) [28] PA VP 62.3 55.8 69.2 51.4 58.2 1787 82.6 56.5 76.0 289 97.2%
DART (25.02) [43] VP 63.6 57.0 69.8 51.2 60.0 1856 82.8 57.4 76.7 296 98.8%
MoB (Ours) PA VP 64.1 57.8 70.1 52.5 61.4 1860 84.8 58.5 78.3 307 100.6%

LLaVA-1.5-7B Pruning budget K = 128; Token Reduction Rate = 77.8%
FastV (ECCV’24) VP 56.1 56.4 60.2 51.3 49.6 1490 59.6 50.6 61.8 285 86.4%
SparseVLM (ICML’25) PA 60.0 51.1 67.1 51.4 56.0 1696 80.5 54.9 73.8 280 93.8%
MustDrop (24.11) PA VP 61.1 55.2 68.5 52.1 56.9 1745 78.7 56.3 74.6 281 95.6%
DART (25.02) VP 63.2 57.5 69.1 51.7 58.7 1840 80.1 56.4 75.9 296 98.0%
MoB (Our) PA VP 63.5 57.5 69.6 52.7 60.9 1845 82.1 57.8 77.5 299 99.4%

LLaVA-1.5-7B Pruning budget K = 64; Token Reduction Rate = 88.9%
FastV (ECCV’24) VP 48.0 52.7 51.1 50.8 46.1 1256 48.0 47.8 55.0 245 77.3%
SparseVLM (ICML’25) PA 56.2 46.1 62.2 50.1 52.7 1505 75.1 51.8 68.2 180 84.6%
MustDrop (24.11) PA VP 60.0 53.1 63.4 51.2 53.1 1612 68.0 54.2 69.3 267 90.1%
DART (25.02) VP 60.6 53.2 69.8 51.6 55.9 1765 73.9 54.4 72.4 270 93.7%
MoB (Our) PA VP 62.1 54.5 69.8 52.1 59.0 1806 77.2 57.0 75.5 277 96.4%

LLaVA-Next-7B w/o Pruning, N = 2880; Token Reduction Rate = 0.0%
Vanilla [26] - 67.4 60.6 70.1 57.6 64.2 1851 86.5 64.9 81.8 517 100%

LLaVA-Next-7B Pruning budget K = 320; Token Reduction Rate = 88.9%
FastV (ECCV’24) VP 61.6 51.9 62.8 53.1 55.9 1661 71.7 55.7 71.9 374 86.4%
SparseVLM (ICML’25) PA 60.6 54.5 66.1 52.0 56.1 1533 82.4 58.4 71.5 270 85.9%
MustDrop (24.11) PA VP 62.8 55.1 68.0 54.0 57.3 1641 82.1 59.9 73.7 382 90.4%
FasterVLM (24.12) [54] VP 61.6 53.5 66.5 52.6 56.9 1701 83.6 56.5 74.0 401 89.8%
DART (25.02) VP 65.3 58.2 68.4 56.1 61.7 1710 84.1 58.7 79.1 406 93.9%
MoB (Our) PA VP 65.8 58.9 68.7 57.0 62.6 1760 84.4 60.2 80.1 418 95.4%

Table 1: Partial comparative experiments on image understanding with the LLaVA-7B Series, where
Kp ∈ { 3K8 , K

4 ,
K
4 }, k =

3Kp

40 for strong-coupling and Kp ∈ {K2 ,
7K
16 ,

5K
12 }, k =

Kp

8 for weak-
coupling benchmarks, corresponding to token reduction rates in {88.9%, 77.8%, 66.7%}; the pruning
layer index ℓ = 2. See Appendix D for the full results.

Theorem 2 (Performance Guarantee). Under Assumption 1 and the covering-regularity of Lemma 3
with constants a, a′, deff >0 and b>a, b′>a′, for any budget split (Kp, K −Kp), covering fold k,
and token set X = V ⊔ P ⊆ Rd with |V| = N , |P| = L, and dH(V,P) ≤ η, the following hold:

(a) Performance bound: The Performance degradation caused by MoB is upper bounded by

∥F(X )−F(MoB(X ))∥ ≤ Cℓ max
{
α(η, k, L) (Kp)

−1/deff , β (K −Kp)
−1/deff

}
+ Cℓ η,

where α(η, k, L) = η
(
b k L/a

)1/deff , β = 2(b′)1/deff .

(b) Multilinear complexity: The complexity of MoB is given by TMoB = O(N (L+K) d).

Remark (Coupling Trade-off). Under weak coupling (large α(η, k, L)), minimizing the bound
requires a larger Kp. Conversely, under strong coupling (small α(η, k, L)), the alignment term decays
rapidly, favoring visual preservation (increasing K −Kp). Specially, under perfect coupling (η = 0),
the bound simplifies to ∥∆y∥ ≤ Cℓ β (K −Kp)

−1/deff ,i.e., MoB reduces to pure visual preservation.
Remark (Budget Scaling). As the total budget K increases, the preservation term β (K −Kp)

−1/deff

decays, requiring a corresponding increase in Kp (and thus a reduction in the alignment term) to
rebalance the trade-off and further lower the overall error bound.
Remark (Scalability). MoB exhibits a multilinear scalability with respect to visual tokens N , prompt
tokens L, and retained tokens K (especially K,L ≪ N ), making it readily adaptable to more
challenging scenarios, such as advanced MLLMs with higher-resolution inputs or multi-frame video.

Proof in Appendix E.5.

4 Experimental Results

Experiment Setting. We perform a comprehensive evaluation of the proposed MoB and several
representative methods on two visual tasks: image understanding and visual understanding, together
with an efficiency analysis. Our experiments employ four popular MLLMs and include a total of 14
widely recognized benchmarks. For further details regarding the benchmarks, models, baselines, and
implement details please refer to Appendix C.
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Figure 3: Performance-Latency trade-off comparisons across four benchmarks on LLaVA-Next-7B.

��� ����� �����	
��
����� �����
��� �����	
��
����� ���������� 	
	�
����� ���������� ���������� ��������	
	�
����� �����

������������������ � ��������� ����� � ������������ �� �!"#$%&"'#()"%*'+,"%-./ !"#$%&"'#()"%*'+,"%-./ !"#$%&"'#()"%*'+,"%-./ !"#$%&"'#()"%*'+,"%-./������� � �� �� �
010232345%46758 9:;6<=>;

Figure 4: Comprehensive ablation on the budget configuration ⟨Kp,K⟩ across four benchmarks with
distinct prompt-visual coupling η on LLaVA-1.5-7B, where K = {64, 128, 192}; the mean relative
slope (%) is given by 100

xn−x1

∑n−1
i=1

yi+1−yi

yi
, quantifying the trade-off intensity; the ratio Kp

K reflects
the cost-effectiveness of prompt alignment, and the box plot presents the distribution of η.

Method GQA MME POPE VQAT MMB SQA Avg.

Qwen2-VL-7B w/o Pruning; Token Reduction Rate = 0.0%
Vanilla [41] 62.2 2317 86.1 82.1 80.5 84.7 100%

Qwen2-VL-7B Token Reduction Rate = 66.7%
FastV 58.0 2130 82.1 77.3 76.1 80.0 94.0%
DART 60.2 2245 83.9 80.5 78.9 81.4 97.0%
MoB (Our) 61.8 2268 84.7 81.1 79.5 82.3 98.4%

Qwen2-VL-7B Token Reduction Rate = 77.8%
FastV 56.7 2031 79.2 72.0 74.1 78.3 91.0%
DART 58.5 2175 82.1 75.3 77.3 79.6 94.3%
MoB (Our) 59.4 2203 82.8 75.8 78.1 80.4 95.2%

Qwen2-VL-7B Token Reduction Rate = 88.9%
FastV 51.9 1962 76.1 60.3 70.1 75.8 84.4%
DART 55.5 2052 77.9 61.8 72.0 77.6 87.4%
MoB (Our) 56.5 2094 78.5 62.7 72.8 78.4 88.6%

Table 2: Comparative experiments on image
understanding with Qwen2-VL-7B.
Method TGIF MSVD MSRV ActNet Avg.

Video-LLaVA-7B Token Reduction Rate = 0.0%
Vanilla [24] 47.1 69.8 56.7 43.1 100%

Video-LLaVA-7B Token Reduction Rate = 93.4%
FastV (ECCV’24) 23.1 38.0 19.3 30.6 52.1%
SparseVLM (ICML’25) 44.7 68.2 31.0 42.6 86.5%
VisionZip (24.12) [48] 42.4 63.5 52.1 43.0 93.2%
TwigVLM (25.03) [36] 44.7 68.3 54.6 41.5 96.3%
MoB (Our) 45.3 68.8 55.2 42.8 97.9%

Table 3: Comparative experiments on video
understanding with Video-LLaVA-7B.

Image Understanding. Tables 2 and 4 report the eval-
uation results across a variety of image-understanding
tasks on LLaVA series and Qwen2-VL, respectively. We
observe that (a) single-objective baselines exhibit com-
plementary strengths under different coupling patterns,
whereas MoB consistently outperforms all baselines,
demonstrating the benefit of balanced objectives; (b)
the superiority of MoB becomes even more significant
under aggressive token reduction. Specifically, the im-
provement of MoB over the best baseline in average
scores increases from 1.8% at a 66.7% token reduction
to 2.7% at an 88.8% reduction on LLaVA-1.5-7B; (c)
MoB matches the performance of the vanilla LLaVA-
1.5-7B with only 33.3% of visual tokens, which may
be attributed to the mitigation of hallucinations caused
by redundant tokens; and (d) MoB scales seamlessly
to advanced models, preserving 95.2% performance on
Qwen2-VL-7B using only 22.2% of visual tokens.

Video Understanding. Experimental results presented
in Table 3 demonstrate that MoB is general and can be
readily extended to more challenging video scenarios
without incurring additional cost. Specifically, MoB preserves 97.9% of average performance for
Video-LLaVA-7B using only 6.6% of visual tokens, which sets new records in most VideoQA
benchmarks, achieving 1.6% and 4.7% improvements over TwigVLM and VisionZip, respectively.
These results validate the generalization ability of MoB.

Efficiency Analysis. We present the performance-latency trade-off measured on an NVIDIA A800-
80GB GPU in Figure 3. The results show that (a) MoB achieves a strong performance-latency
trade-off, delivering a 1.3-1.5× speed-up for LLaVA-NEXT-7B with negligible performance loss;
(b) due to ignoring the K-η trade-off, the multi-stage method MustDrop is outperformed by single-
objective methods FastV and SparseVLM on MME and POPE, and suffers significant performance
drops as token budgets shrink (i.e., latency decreases). In contrast, MoB consistently maintains a
robust trade-off across all benchmarks, surpassing all the baselines by a clear margin; (c) MoB does
not rely on attention scores to identify important tokens, making it compatible with flash attention
and more efficient than attention-based methods such as SparseVLM and FastV.
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5 Ablation and Discussion

Impact of ⟨K, η,Kp, ⟩. We study the impact of K, η, and Kp on pruning performance across four
benchmarks: GQA and TextVQA (weak coupling); VizWiz and MMB (strong coupling). As shown
in Figure 4, the results can be interpreted by Theorem 1 and Theorem 2(a), respectively.
A. Theorem 1 Perspective: When K is large, e.g., K = 192, the trade-off is governed by D1K

−2/deff ,
hence the trade-off intensity remains nearly identical across benchmarks. Conversely, When K is
small, especially K = 64, in weak-coupling benchmarks, the trade-off turns to be governed by D2η

2;
thus, the trade-off intensity is obviously more pronounced in GQA and TextVQA than that in VizWiz
and MMB. These observations exactly confirm the validity of Theorem 1.
B. Theorem 2(a) Perspective. (a) Under weak coupling, the alignment term α(η, k, L)(Kp)

−1/deff

is amplified, which requires a larger Kp to suppress the overall error. However, across benchmarks
sharing the same coupling pattern, the optimal Kp values exhibit only minor variation. (b) Increasing
the total budget K pushes the optimal Kp upward to rebalance the two bound terms. Since the prompt
length L is fixed, adding more tokens yields diminishing returns for prompt alignment, which is
reflected in the declining ratio Kp/K. These validate the performance bound in Theorem 2(a).
Remarkably, the experimental results suggest that simply determining the optimal Kp for each of the
two coupling patterns suffices to guarantee effective generalization across all scenarios.

Impact of Covering Fold k. We chose the covering fold k by examining the normalized ratio k/Kp

across eight benchmarks and nine budget configurations. As shown in Figure 5, (a) weak-coupling
benchmarks generally require a larger k to ensure critical region coverage, whereas strong-coupling
settings suffice with a smaller k; (b) benchmarks with longer prompts impose a lower cap on k to
preserve sampling diversity and avoid redundant selection of salient tokens. Notably, weak-coupling
benchmarks with long prompts (e.g., GQA, TextVQA) exhibit a narrowly clustered optimal k/Kp

range, reflecting their strict requirement to cover key tokens without excessive redundancy.

Impact of Pruning Layer. As shown in Figure 6, (a) models with visual token pruning consistently
achieve a more favorable performance-efficiency trade-off than the vanilla model on both benchmarks.
(b) Pruning in deeper layers provides more significant benefits for the weak-coupling TextVQA than
strong-coupling MME. We attribute this to stronger cross-modal interactions in deeper MLLM layers,
which facilitate identification of answer-relevant tokens under weak coupling, whereas pruning in
shallow layers disrupts these interactions and incurs greater performance degradation.

6 Conclusion

In this paper, we present a comprehensive analysis of visual token pruning, deriving the first closed-
form error bound with a practical relaxation. Leveraging ϵ-covering theory, we quantify the intrinsic
trade-off between the fundamental pruning objectives, i.e., visual preservation and prompt alignment,
and identify their optimal attainment levels under a fixed pruning budget. Building on these insights,
we introduce MoB, a training-free algorithm for visual token pruning. Based on greedy radius trading,
MoB ensures the near-optimal attainment per objective via budget allocation, offering a provable
performance bound and multilinear scalability. Experimental results indicate that MoB matches the
performance (100.6%) of LLaVA-1.5-7B with only 33.3% of visual tokens and can be seamlessly
integrated into advanced MLLMs, such as LLaVA-Next-7B and Qwen2-VL-7B. Our work advances
the understanding of visual token pruning and offers valuable insights for future MLLM compression.

Limitations. Our theoretical guarantees rely on assumption 1, which is generally satisfied in practice
but may not hold for all MLLMs. Besides, MoB applies a preliminary search to select the proper Kp,
which potentially introduces extra tuning overhead in practical applications. Future work will focus
on developing an adaptive Kp selection mechanism driven by online estimation of the coupling η.
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Appendix

In the appendix, we provide additional information as listed below:

• §A provides the broader impacts of MoB
• §B provides the algorithm details and pseudocode of MoB
• §C provides the overview of the data, models, baselines and implementation details.
• §D provides the additional experimental results.
• §E provides the omitted technical details.

A Societal Impacts and Limitations

The proposed MoB yields substantial acceleration of MLLMs with negligible performance loss,
thereby enabling high-resolution vision-language models to operate on resource-constrained platforms
such as edge devices and mobile systems while supporting low-latency applications—including
assistive technologies for the visually impaired, autonomous navigation, and AR/VR. Besides,
MoB potentially benefits other redundancy-heavy domains (e.g., point clouds and multi-sensor
fusion), guiding efficient token-level compression beyond vision. Limitations arise from our reliance
on Assumption 1 and lemma 3 (Lipschitz continuity and covering regularity); in embedding spaces
that violate metric properties or exhibit highly irregular token distributions, the provable performance
bounds may no longer hold.
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B Algorithm

Algorithm 1 Multi-Objective Balanced Covering (MoB)

Require: Visual token V ∈ RN×d, Prompt token P ∈ RL×d, Budget Kp, Kv, Covering fold k

Ensure: Index list for select tokens S ∈ NKp+Kv

1: Normalize all token embeddings to unit ℓ2 norm: V← V/∥V∥2,row, P← P/∥P∥2,row

Step 1. Select Prompt Centers via Nearest-Neighbor Covering
2: Compute cosine-similarity matrix via PV⊤: M← PV⊤ ▷ M ∈ RL×N.
3: Retrieve k nearest token indices per prompt:

Cidx ← ArgTopK(M, k, axis = 1), Csim ← TopK(M, k, axis = 1)

▷ Cidx,Csim ∈ RL×k collects index and similarity of k closest centers per prompt token.
# Deduplicate candidate indices

4: Flatten index and similarity arrays: Cidx ← Flatten(Cidx), Csim ← Flatten(Csim) ▷
Cidx ∈ NLk, Csim ∈ RLk

5: Remove duplicate indices, preserving associated similarities:

⟨C∗
idx,C

∗
sim⟩ ← UniqueIndices(Cidx, Csim)

▷ Kp ≤ |C∗
idx| ≤ Lk

6: Identify top-Kp prompt centers by similarity: ip ← ArgTopK(C∗
sim, Kp)

7: Form the prompt-center index list: Sp ← C∗
idx[ip] ▷ Sp ∈ NKp

Step 2. Select Visual Centers via Farthest-Point Sampling
8: Initialize selected centers: S← Sp

# Initialize token-to-prompt minimum distances
9: Compute pairwise minimum distances between all tokens and selected prompt centers:

d← 1N×Kp −VV[Sp]
⊤, d← Min(d, axis = 1)

▷ Selected centers have zero distance in d ∈ RN .
# Farthest-Point Sampling

10: for t = 1 to Kv do
11: Select the token farthest from current centers: i∗ ← ArgMax(d), S← Concat(S, i∗) ▷

Selected tokens are excluded (distance = 0) from further sampling.
12: Compute cosine distances to the newly selected token: d∆ ← 1N −VV[i∗]⊤

13: Update each token’s minimum distance: d ← ElementwiseMin(d, d∆) ▷ Distance of
newly selected token i∗ set to zero in d.

14: end for
15: return S

Algorithm 2 Compute Prompt-Visual Coupling

Require: Visual embeddings V ∈ Rnv×d, Prompt embeddings P ∈ Rnp×d

Ensure: Hausdorff distance h(V,P)

Step 1. Compute Pairwise Euclidean Distances
1: Compute distance matrix via cdist: D ← cdist(V, P, p = 2) ▷ D ∈ Rnv×np

Step 2. Directed Hausdorff Distances
2: Visual-to-prompt directed distance:

dv→p, _ ← min(D, axis = 2) , hv→p ← max(dv→p)

3: Prompt-to-visual directed distance:

dp→v, _ ← min(D, axis = 1) , hp→v ← max(dp→v)

Step 3. Final Hausdorff Distance
4: return max

(
hv→p, hp→v

)

15



C Experiment Details

C.1 Benchmarks

Our experiments evaluate the vision-language reasoning abilities of multimodal large language
models using a comprehensive suite of widely recognized benchmarks. For image understanding
tasks, we assess performance on ten public benchmarks: GQA, MMBench (MMB) and MMBench-CN
(MMBCN), MME, POPE, VizWiz, ScienceQA (SQA), VQAV2, TextVQA (VQAT), and OCRBench
(OCR). For video understanding tasks, we conduct experiments on four popular benchmarks: TGIF-
QA (TGIF), MSVD-QA (MSVD), MSRVTT-QA (MSRV), and ActivityNet-QA (ActNet). The
following section provides a concise overview of these benchmarks:

GQA [15] leverages scene graphs, questions, and images to evaluate visual scene understanding
and reasoning. By incorporating detailed spatial relationships and object-level attributes, it poses
significant challenges for models to perform accurate visual reasoning in complex environments.

MMBench [51] introduces a hierarchical evaluation framework where model capabilities are dissected
into three levels. Level-1 focuses on basic perception and reasoning; Level-2 subdivides these abilities
into six distinct sub-skills; and Level-3 further refines the evaluation into 20 specific dimensions. Its
Chinese counterpart, MMBench-CN, adopts a similar structure.

MME [23] rigorously tests perceptual and cognitive abilities across 14 sub-tasks. By employing
carefully crafted instruction-answer pairs and succinct instructions, MME minimizes data leakage
and provides a robust, fair assessment of a model’s multifaceted performance.

POPE [20] targets the evaluation of object hallucination by posing binary questions about object
presence in images. It quantifies hallucination levels using metrics, e.g., accuracy, recall, precision,
and F1 score, offering a precise and focused measure of model reliability.

VizWiz [12] is a visual question answering benchmark derived from interactions with blind users.
Comprising over 31, 000 image-question pairs with 10 human-annotated answers per query, it
encapsulates the challenges of low-quality image capture and conversational spoken queries, thereby
emphasizing real-world visual understanding.

ScienceQA [32] spans multiple scientific domains by organizing questions into 26 topics, 127
categories, and 379 skills. This hierarchical categorization provides a diverse and rigorous testbed
for evaluating multimodal understanding, multi-step reasoning, and interpretability across natural,
language, and social sciences.

VQAV2 [11] challenges models with open-ended questions based on 265, 016 images that depict a
variety of real-world scenes. Each question is paired with 10 human-annotated answers, facilitating a
thorough evaluation of a model’s capacity to interpret and respond to diverse visual queries.

TextVQA [38] focuses on the integration of text within visual content. It evaluates a model’s
proficiency in reading and reasoning about textual information embedded in images, thereby requiring
a balanced understanding of both visual and linguistic cues.

OCRBench [30] is a comprehensive benchmark for evaluating the OCR capabilities of multi-modal
language models across five key tasks: text recognition, scene text-centric and document-oriented
VQA, key information extraction, and handwritten mathematical expression recognition.

TGIF-QA [16] adapts the visual question answering task to the video domain by focusing on GIFs.
With 165K question-answer pairs, it incorporates tasks, e.g., counting repetitions, identifying repeat-
ing actions, detecting state transitions, and frame-specific question answering, thereby demanding
detailed spatio-temporal analysis.

MSVD-QA [46] builds upon the MSVD dataset by pairing 1, 970 video clips with approximately
50.5K QA pairs. Questions are categorized into five distinct types, e.g., what, who, how, when, and
where, making it a versatile tool for evaluating video understanding.

MSRVTT-QA [6] features 10K video clips and 243K QA pairs designed to test the integration
of visual and temporal information. Its structure, which parallels that of MSVD-QA through the
inclusion of five question types, further enriches the evaluation landscape for video-based tasks.
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ActivityNet-QA [50] provides 58K human-annotated question-answer pairs drawn from 5.8K videos.
Its focus on questions related to motion, spatial relationships, and temporal dynamics necessitates
long-term spatio-temporal reasoning, thus serving as a benchmark for advanced video understanding.

C.2 Multi-modal Large Language Models

We evaluate MoB using various open-source multimodal large language models (MLLMs). For image
understanding tasks, experiments are conducted on the LLaVA series, including LLaVA-1.5-7B and
LLaVA-Next-7B, as well as the Qwen-VL series, such as Qwen2-VL-7B. Specifically, LLaVA-Next
and Qwen2-VL are utilized to validate performance on high-resolution images, i.e., those with a
larger number of visual tokens. For video understanding tasks, we employ Video-LLaVA-7B as the
baseline model, following the settings reported in its original paper to ensure a fair comparison.

LLaVA-1.5-7B [25] is a robust vision-language model built on the LLaVA framework. It processes
images resized to 224× 224 and tokenizes them into roughly 572 visual tokens using a patch-based
vision encoder. This design balances fine-grained visual representation with computational efficiency,
making it effective for diverse multimodal tasks.

LLaVA-Next-7B [26] extends the LLaVA-1.5 by incorporating refined training strategies and data
curation. It supports higher-resolution inputs (up to 448× 448), yielding up to 2880 visual tokens.
These enhancements improve its visual reasoning capabilities and enable more precise alignment
between visual content and language but also incur significantly increased computational cost.

Qwen2-VL-7B [41] augments the Qwen2 language model with visual input capabilities. This model
leverages cross-modal pretraining to seamlessly merge vision and language, demonstrating strong
performance in complex visual question answering and comprehensive scene understanding.

Video-LLaVA-7B [24] extends the LLaVA framework into the temporal domain by processing
video inputs. It is designed to capture both spatial and temporal dynamics, enabling effective video
comprehension and video-based question answering with coherent and context-aware responses.

C.3 Baselines

To validate the superiority of the proposed MoB, we construct a robust baseline that integrates a
comprehensive set of representative existing methods, which encompass single-stage methods with
both two distinct objectives and several multi-stage methods.

ToMe [5] employs a lightweight token-matching scheme to merge visually similar tokens across
transformer layers, thereby reducing computation without additional training. Its simple yet effective
design makes it well suited for real-time applications.

FastV [7] leverages attention maps in the early layers to identify and prune non-critical tokens,
significantly reducing initial computational overhead. This focus on early-stage reduction allows the
model to operate more efficiently while maintaining performance.

SparseVLM [55] ranks tokens based on cross-modal attention to assess image-prompt relevance and
adopts adaptive sparsity ratios to retain key information. It further incorporates a token recycling
mechanism to balance the trade-off between efficiency and accuracy.

HiRED [1] allocates token budgets across image partitions by using CLS token attention and then
selects the most informative tokens within each partition. This spatially aware approach ensures
balanced reduction while preserving contextual details.

LLaVA-PruMerge [35] combines pruning and merging strategies by dynamically removing less
important tokens using sparse CLS-visual attention. It then clusters the retained tokens based on key
similarity, ensuring that crucial visual features remain intact.

PyramidDrop [45] adopts a progressive token-dropping strategy across different model stages,
resulting in a pyramid-like token structure. This method carefully balances the reduction of tokens
with the preservation of performance as the processing advances.

MustDrop [28] integrates several token-reduction strategies including spatial merging, text-guided
pruning, and output-aware cache policies. Its multi-faceted approach efficiently reduces token counts
across various stages of the model.
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VisionZip [48] first selects dominant tokens that capture the majority of an image’s information and
then merges the remaining tokens based on semantic similarity. This approach dramatically reduce
token redundancy while accelerating inference and maintaining robust performance.

FasterVLM [54] evaluates token importance using CLS attention in the encoder and prunes tokens
before they interact with the language model. This preemptive reduction streamlines the overall
process and enhances model efficiency.

GlobalCom2 [29] employs a hierarchical strategy by coordinating thumbnail tokens to allocate
adaptive retention ratios for high-resolution crops. This approach successfully preserves local details
while providing effective global context reduction.

DART [43] leverages token duplication to guide its pruning process instead of relying solely on
attention scores. By selecting a small set of pivot tokens and retaining only those with minimal
redundancy, DART achieves significant acceleration in a training-free manner.

TokenCarve [39] implements a two-stage, training-free compression framework that preserves
critical visual information during aggressive token reduction. It first prunes low-information tokens
using an information-preservation guided selection and then merges the remaining tokens based on
similarity to minimize accuracy loss.

TwigVLM [36] accelerates large vision-language models by appending a lightweight twig block
to an early layer of a frozen base VLM. It utilizes twig-guided token pruning coupled with self-
speculative decoding to boost generation speed while retaining high accuracy even under aggressive
token reduction.

C.4 Implement Details

To ensure a fair comparison, we do not meticulously search the optimal hyperparameters of MoB
(i.e., the prompt covering cardinality Kp and the covering fold k) for each benchmark; besides, we
apply the same configurations to all involved MLLMs. Specifically, for image understanding, we set

Kp ∈
{

3K
8 , K

4 ,
11K
24

}
, k =

3Kp

40

under strong coupling, and
Kp ∈

{
K
2 ,

7K
16 ,

5K
12

}
, k =

Kp

8

under weak coupling, corresponding to token reduction rates of {88.9%, 77.8%, 66.7%}.

As for video understanding, we set Kp = 3K
8 , k =

3Kp

40 for MSVD, MSRV, and ActNet; and set
Kp = K

2 , k =
Kp

8 for TGIF. The pruning layer index is fixed at ℓ = 2 for both image and video
tasks. All baselines use their default settings.

To ensure reproducibility, we cross-validated our experimental results using the publicly available
MLLMs evaluation tool lmms-eval (v0.3.0) [53, 4], with the random seed set to 1234. All experiments
were conducted on 4× Nvidia A800-80GB GPUs paired with 2× Intel Xeon® Gold 6348 CPUs. The
implementation was carried out in Python 3.10 using PyTorch 2.1.2 and CUDA 11.8.
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D Additional Experimental Results

D.1 Quantitative Comparison

Method Objectives
Strong Coupling Weak Coupling

Avg.
MMB MMBCN SQA VizWiz GQA MME POPE VQAT VQAV2 OCR

LLaVA-1.5-7B w/o Pruning, N = 576; Token Reduction Rate = 0.0%
Vanilla [25] - 64.7 58.1 69.5 50.0 61.9 1862 85.9 58.2 78.5 297 100%

LLaVA-1.5-7B Pruning budget K = 192; Token Reduction Rate = 66.7%
ToMe (ICLR’23) [5] VP 60.5 - 65.2 - 54.3 1563 72.4 52.1 68.0 - 88.5%
FastV (ECCV’24) [7] VP 61.2 57.0 67.3 50.8 52.7 1612 64.8 52.5 67.1 291 91.2%
HiRED (AAAI’25) [1] VP 62.8 54.7 68.4 50.1 58.7 1737 82.8 47.4 74.9 190 91.5%
LLaVA-PruMerge (24.05) [35] VP 59.6 52.9 67.9 50.1 54.3 1632 71.3 54.3 70.6 253 90.8%
SparseVLM (ICML’25) [55] PA 62.5 53.7 69.1 50.5 57.6 1721 83.6 56.1 75.6 292 96.3%
PyramidDrop (CVPR’25) [45] PA 63.3 56.8 68.8 51.1 57.1 1797 82.3 56.1 75.1 290 96.7%
FiCoCo-V (EMNLP’24) [52] VP 62.3 55.3 67.8 51.0 58.5 1732 82.5 55.7 74.4 - 96.1%
MustDrop (24.11) [28] PA VP 62.3 55.8 69.2 51.4 58.2 1787 82.6 56.5 76.0 289 97.2%
VisionZip (24.12) [48] VP 63.0 - 68.9 - 59.3 1783 85.3 57.3 76.8 - 97.7%
DART (25.02) [43] VP 63.6 57.0 69.8 51.2 60.0 1856 82.8 57.4 76.7 296 98.8%
TokenCarve (25.03) [39] PA VP 63.0 - 69.1 50.9 - 1830 84.9 58.4 78.0 - 99.3%
TwigVLM (25.03) [36] PA 64.0 - 68.8 - 61.2 1848 87.2 58.0 78.1 - 99.5%
MoB (Ours) PA VP 64.1 57.8 70.1 52.5 61.4 1860 84.8 58.5 78.3 307 100.6%

LLaVA-1.5-7B Pruning budget K = 128; Token Reduction Rate = 77.8%
ToMe (ICLR’23) VP 53.3 - 59.6 - 52.4 1343 62.8 49.1 63.0 - 80.4%
FastV (ECCV’24) VP 56.1 56.4 60.2 51.3 49.6 1490 59.6 50.6 61.8 285 86.4%
HiRED (AAAI’25) VP 61.5 53.6 68.1 51.3 57.2 1710 79.8 46.1 73.4 191 90.2%
LLaVA-PruMerge (24.05) VP 58.1 51.7 67.1 50.3 53.3 1554 67.2 54.3 68.8 248 88.8%
SparseVLM (ICML’25) PA 60.0 51.1 67.1 51.4 56.0 1696 80.5 54.9 73.8 280 93.8%
PyramidDrop (CVPR’25) PA 61.6 56.6 68.3 51.0 56.0 1761 82.3 55.1 72.9 287 95.1%
FiCoCo-V (EMNLP’24) VP 61.1 54.3 68.3 49.4 57.6 1711 82.2 55.6 73.1 - 94.9%
MustDrop (24.11) PA VP 61.1 55.2 68.5 52.1 56.9 1745 78.7 56.3 74.6 281 95.6%
VisionZip (24.12) VP 62.0 - 68.9 - 57.6 1762 83.2 56.8 75.6 - 96.2%
DART (25.02) VP 63.2 57.5 69.1 51.7 58.7 1840 80.1 56.4 75.9 296 98.0%
TokenCarve (25.03) PA VP 62.7 - 68.9 51.0 - 1829 84.5 58.1 77.3 - 99.0%
TwigVLM (25.03) PA 63.5 - 69.5 - 60.6 1818 86.6 57.8 77.9 - 99.0%
MoB (Our) PA VP 63.5 57.5 69.6 52.7 60.9 1845 82.1 57.8 77.5 299 99.4%

LLaVA-1.5-7B Pruning budget K = 64; Token Reduction Rate = 88.9%
ToMe (ICLR’23) VP 43.7 - 50.0 - 48.6 1138 52.5 45.3 57.1 - 70.1%
FastV (ECCV’24) VP 48.0 52.7 51.1 50.8 46.1 1256 48.0 47.8 55.0 245 77.3%
HiRED (AAAI’25) VP 60.2 51.4 68.2 50.2 54.6 1599 73.6 44.2 69.7 191 87.0%
LLaVA-PruMerge (24.05) VP 55.3 49.1 68.1 50.1 51.9 1549 65.3 54.0 67.4 250 87.4%
SparseVLM (ICML’25) PA 56.2 46.1 62.2 50.1 52.7 1505 75.1 51.8 68.2 180 84.6%
PyramidDrop (CVPR’25) PA 58.8 50.5 68.6 50.7 41.9 1561 55.9 45.9 69.2 250 78.1%
FiCoCo-V (EMNLP’24) VP 60.3 53.0 68.1 49.8 52.4 1591 76.0 53.6 71.3 - 91.5%
MustDrop (24.11) PA VP 60.0 53.1 63.4 51.2 53.1 1612 68.0 54.2 69.3 267 90.1%
VisionZip (24.12) VP 60.1 - 69.0 - 55.1 1690 77.0 55.5 72.4 - 92.8%
DART (25.02) VP 60.6 53.2 69.8 51.6 55.9 1765 73.9 54.4 72.4 270 93.7%
TokenCarve (25.03) PA VP 62.0 - 69.7 51.4 - 1754 79.9 57.0 74.8 - 97.0%
TwigVLM (25.03) PA 60.4 - 70.0 - 58.8 1760 82.7 55.8 75.6 - 96.1%
MoB (Our) PA VP 62.1 54.5 69.8 52.1 59.0 1806 77.2 57.0 75.5 277 96.4%

LLaVA-Next-7B w/o Pruning, N = 2880; Token Reduction Rate = 0.0%
Vanilla [26] - 67.4 60.6 70.1 57.6 64.2 1851 86.5 64.9 81.8 517 100%

LLaVA-Next-7B Pruning budget K = 320; Token Reduction Rate = 88.9%
FastV (ECCV’24) VP 61.6 51.9 62.8 53.1 55.9 1661 71.7 55.7 71.9 374 86.4%
HiRED (AAAI’25) VP 64.2 55.9 66.7 54.2 59.3 1690 83.3 58.8 75.7 404 91.8%
LLaVA-PruMerge (24.05) VP 61.3 55.3 66.4 54.0 53.6 1534 60.8 50.6 69.7 146 79.9%
SparseVLM (ICML’25) PA 60.6 54.5 66.1 52.0 56.1 1533 82.4 58.4 71.5 270 85.9%
PyramidDrop (CVPR’25) PA 63.4 56.2 67.5 54.1 56.4 1663 77.6 54.4 73.5 259 86.8%
MustDrop (24.11) PA VP 62.8 55.1 68.0 54.0 57.3 1641 82.1 59.9 73.7 382 90.4%
VisionZip (24.12) VP 63.1 - 67.3 - 59.3 1702 - 58.9 76.2 - 93.0%
FasterVLM (24.12) [54] VP 61.6 53.5 66.5 52.6 56.9 1701 83.6 56.5 74.0 401 89.8%
GlobalCom2(25.01) [29] VP 61.8 53.4 67.4 54.6 57.1 1698 83.8 57.2 76.7 375 90.3%
DART (25.02) VP 65.3 58.2 68.4 56.1 61.7 1710 84.1 58.7 79.1 406 93.9%
TwigVLM (25.03) PA 65.0 - 68.7 - 62.2 1758 - 57.4 79.7 - 95.4%
MoB (Our) PA VP 65.8 58.9 68.7 57.0 62.6 1760 84.4 60.2 80.1 418 95.4%

Table 4: Full results on image understanding with the LLaVA-7B Series, where Kp ∈ { 3K8 , K
4 ,

K
4 },

k =
3Kp

40 for strong-coupling and Kp ∈ {K2 ,
7K
16 ,

5K
12 }, k =

Kp

8 for weak-coupling benchmarks,
corresponding to token reduction rates in {88.9%, 77.8%, 66.7%}; the pruning layer index ℓ = 2.
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Figure 7: Visualization of the selected prompt and visual centers under weak coupling.
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Figure 8: Visualization of the selected prompt and visual centers under strong coupling.
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Figure 9: Observations of prompt-visual coupling η across 9 popular benchmarks.
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E Omitted Technical Details

E.1 Proof of Lemma 1

Restatement of Lemma 1 (An Error Bound for Visual Token Pruning). Under Assumption 1, given
any token set with its pruned counterpart X = V ⊔ P, Xs = S ⊔ P ⊆ Rd, the pruning error bound
is given by:

∥F(X )−F(Xs)∥ ≤ Cℓ max
{
min

{
dH(S,V), dH(V,P)

}
, min

{
dH(S,V), dH(S,P)

}}
.

Remark. Here dH(S,P) and dH(S,V) describe the prompt alignment and visual preservation,
while dH(V,P) is an inherent term that describes the prompt-visual coupling of input data.

Proof. The intermediate input for any layer and its pruned counterpart are given by

X = V ⊔ P and Xs = S ⊔ P.

By Equation (1), the Hausdorff distance is symmetric, i.e.,

dH(S,V) = dH(V,S), (E1-1)

and induced by Euclidean distance.

Step 1. Bound the one-sided distances.

We analyze the distances by considering the membership of the points in the subsets.

Direction 1 (X → Xs) For any x ∈ X :

Case (i): If x ∈ P , then since P ⊂ Xs,

inf
y∈Xs

∥x− y∥ = 0.

Case (ii): If x ∈ V , then the candidate points in Xs = S ⊔P can be chosen either from S or P . Thus,

inf
y∈Xs

∥x− y∥ ≤ min
{
inf
s∈S
∥x− s∥, inf

p∈P
∥x− p∥

}
.

Taking the supremum over x ∈ V yields

sup
x∈V

inf
y∈Xs

∥x− y∥ ≤ min
{
sup
x∈V

inf
s∈S
∥x− s∥, sup

x∈V
inf
p∈P
∥x− p∥

}
.

sup
x∈V

inf
p∈P
∥x− p∥ ≤ max

{
sup
x∈V

inf
p∈P
∥x− p∥, sup

p∈P
inf
x∈V
∥p− x∥

}
= dH(V,P),

By Equation (1), we derive the distance in direction 1:

sup
x∈X

inf
y∈Xs

∥x− y∥ ≤ min
{
dH(V,S), dH(V,P)

}
. (E1-2)

Direction 2 (Xs → X ) For any y ∈ Xs:

Case (i): If y ∈ P , then as P ⊂ X ,
inf
x∈X
∥y − x∥ = 0.

Case (ii): If y ∈ S, the candidate points in X = V ⊔ P can be chosen from either V or P; hence

inf
x∈X
∥y − x∥ ≤ min

{
inf
v∈V
∥y − v∥, inf

p∈P
∥y − p∥

}
.

Taking the supremum over y ∈ S yields

sup
y∈S

inf
x∈X
∥y − x∥ ≤ min

{
sup
y∈S

inf
v∈V
∥y − v∥, sup

y∈S
inf
p∈P
∥y − p∥

}
.
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sup
y∈S

inf
p∈P
∥y − p∥ ≤ max

{
sup
y∈S

inf
p∈P
∥y − p∥, sup

p∈P
inf
y∈S
∥p− y∥

}
= dH(S,P),

By Equation (1), we derive the distance in direction 2:

sup
y∈Xs

inf
x∈X
∥y − x∥ ≤ min

{
dH(S,V), dH(S,P)

}
. (E1-3)

Step 2. Combine the bounds.

By Equation (1), combining the bounds in (E1-2) and (E1-3), we obtain

dH
(
X ,Xs

)
≤ max

{
min

{
dH(V,S), dH(V,P)

}
, min

{
dH(S,V), dH(S,P)

}}
.

Based on (E1-1), we have

dH
(
X ,Xs

)
≤ max

{
min

{
dH(S,V), dH(V,P)

}
, min

{
dH(S,V), dH(S,P)

}}
.

Loading the Assumption 1, we have the output discrepancy is bounded by

∥F(X )−F(Xs)∥ ≤ Cℓ dH
(
X ,Xs

)
.

= Cℓ max
{
min

{
dH(S,V), dH(V,P)

}
, min

{
dH(S,V), dH(S,P)

}}
.

This completes the proof.
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E.2 Proof of Lemma 2

Restatement of Lemma 2 (A Relaxed Error Bound under Practical Budgets) . Under Assumptions 1
and 2, let X = V ⊔ P, Xs = S ⊔ P ⊆ Rd with |S| = K ≪ N . Partition the retained token
set S into two disjoint subsets: S = Sp ⊔ Sv, devoted to prompt alignment dH(Sp,P) and visual
preservation dH(Sv,V), respectively. Then, the pruning error bound reduces to

∥F(X )−F(Xs)∥ ≤ Cℓ max
{
dH(Sp,P), dH(Sv,V)

}
+ Cℓ η.

Proof. By Lemma 1, we obtain

∥F(X )−F(Xs)∥ ≤ Cℓ max
{
min

{
dH(S,V), dH(V,P)

}
, min

{
dH(S,V), dH(S,P)

}}
.

Since min{a, b} ≤ max{a, b}, we have

∥F(X )−F(Xs)∥ ≤ Cℓ max
{
dH

(
S,P

)
, dH

(
S,V

)
, dH

(
V,P

)}
. (E2-1)

For any p ∈ P , we have

inf
s∈S
∥p− s∥ = min

{
inf
s∈Sp

∥p− s∥, inf
s∈Sv

∥p− s∥
}
≤ inf

s∈Sp

∥p− s∥.

Taking the supremum over p ∈ P yields

sup
p∈P

inf
s∈S
∥p− s∥ ≤ sup

p∈P
inf
s∈Sp

∥p− s∥.

Similarly, since Sv ⊂ S,
sup
s∈Sv

inf
p∈P
∥s− p∥ ≤ sup

s∈S
inf
p∈P
∥s− p∥.

Thus, by Equation (1),

dH(S,P) ≤ max
{
dH(Sp,P), dH(Sv,P)

}
.

Using Assumption 2 (dH(V,P) ≤ η) and the triangle inequality for Hausdorff distance, we have

dH(Sv,P) ≤ dH(Sv,V) + dH(V,P) ≤ dH(Sv,V) + η,

dH(Sp,V) ≤ dH(Sp,P) + dH(P,V) ≤ dH(Sp,P) + η.

Hence,
dH(S,P) ≤ max

{
dH(Sp,P), dH(Sv,V) + η

}
. (E2-2)

Similarly, one can show that

dH(S,V) ≤ max
{
dH(Sv,V), dH(Sp,P) + η

}
. (E2-3)

Loading the maximum of (E2-2), (E2-3) and dH(V,P) into (E2-1), we obtain

∥F(X )−F(Xs)∥ ≤ Cℓ max
{
dH(S,P), dH(S,V), dH(V,P)

}
≤ Cℓ max

{
dH(Sp,P), dH(Sv,V) + η, dH(Sv,V), dH(Sp,P) + η, η

}
Since dH(Sp,P) ≥ 0, dH(Sv,V) ≥ 0, η ≥ 0, we have

max
{
dH(Sp,P), dH(Sp,P) + η, η

}
= dH(Sp,P) + η,

max
{
dH(Sv,V), dH(Sv,V) + η, η

}
= dH(Sv,V) + η.

Hence
∥F(X )−F(Xs)∥ ≤ Cℓ max

{
dH(Sp,P), dH(Sv,V)

}
+ Cℓ η.

This completes the proof.
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E.3 Proof of Lemma 3

Restatement of Lemma 3 (deff -regular lower bound on covering numbers). Given P,V ⊂ Rd with
an effective dimension deff . Suppose their δ-dilations Vδ :=

⋃
v∈V B(v, δ), Pδ :=

⋃
p∈P B(p, δ)

(δ ≪ η) satisfy deff -dimensional covering regularity; thus, there exist constants b>a>0, b′>a′> 0
and ϵ0>δ such that

a ϵ−deff
p ≤ N (P, ϵp) ≤ b ϵ−deff

p , a′ ϵ−deff
v ≤ N (V, ϵv) ≤ b′ ϵ−deff

v , ∀ ϵp, ϵv ∈ (δ, ϵ0],

Remark Previous work suggests that both visual and language embeddings concentrate on a low-
dimensional manifold, so the effective covering dimension satisfies the typical relation deff ≪ d.

Proof. We prove the two-sided bound for P; the argument for V is identical.

Notation.

• N (X, r): minimal number of closed balls of radius r covering X .

• Xδ =
⋃

x∈X B(x, δ), with B(x, δ) = {y : ∥y − x∥ ≤ δ}.

Step 1. Transfer trick for small ϵ.

Fix ϵ ∈ (δ, ϵ0] and define ϵ′ = min{ϵ+ δ, ϵ0}.
If ϵ ≤ ϵ0 − δ (so ϵ′ = ϵ+ δ), then any ϵ-cover {zi}mi=1 of P satisfies for each y ∈ Pδ:

∃x ∈ P : ∥y − x∥ ≤ δ, ∃ i : ∥x− zi∥ ≤ ϵ =⇒ ∥y − zi∥ ≤ ϵ+ δ = ϵ′.

Hence

Pδ ⊆
m⋃
i=1

B(zi, ϵ
′) =⇒ N (Pδ, ϵ

′) ≤ N (P, ϵ). (E3-1)

Note: For ϵ > ϵ0 − δ, the above transfer argument is not applied.

Step 2. Lower bound on N (P, ϵ).
Split into two cases:

Case I: ϵ ≤ ϵ0 − δ. Since Pδ satisfies deff -dimensional covering regularity; loading the lower-bound
for Pδ at radius ϵ′ = ϵ+ δ, there exists a constant aδ ≥ 0 such that

N (Pδ, ϵ
′) = N (Pδ, ϵ+ δ) ≥ aδ (ϵ+ δ)−deff .

Based on (E3-1), we obtain

aδ(ϵ+ δ)−deff ≤ N (Pδ, ϵ
′) ≤ N (P, ϵ)

Since δ ≤ ϵ, it follows that ϵ+ δ ≤ 2ϵ; thus, we have

N (P, ϵ) ≥ aδ 2
−deff ϵ−deff . (E3-2)

Case II: ϵ > ϵ0 − δ. Define ã := (ϵ0 − δ)deff , such that

(ϵ0 − δ)−deff = ã−1.

Since ϵ > ϵ0 − δ, we have
ϵ−deff ≤ (ϵ0 − δ)−deff .

Hence
ϵ−deff ≤ ã−1 ⇐⇒ ã ϵ−deff ≤ 1.

Since any nonempty set P has covering number at least one, the following holds

ã ϵ−deff ≤ 1 ≤ N (P, ϵ). (E3-3)
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Therefore, set a := min{aδ2−deff , ã} > 0, combining (E3-2) and (E3-3) yields

N (P, ϵ) ≥ a ϵ−deff , ∀ ϵ ∈ (δ, ϵ0]. (E3-4)

Similarly, V holds N (V, ϵ) ≥ a′ ϵ−deff , ∀ ϵ ∈ (δ, ϵ0].

Step 3. Upper bound on N (P, ϵ).
Since Pδ satisfies deff -dimensional covering regularity, there exists a constant bδ ≥ aδ ≥ 0 such that

N (Pδ, ϵ) ≤ bδ ϵ
−deff .

Since P ⊆ Pδ , we have N (P, ϵ) ≤ N (Pδ, ϵ); thus, the following holds

N (P, ϵ) ≤ N (Pδ, ϵ) ≤ bδ ϵ
−deff .

Based on the monotonicity of covering numbers, for every radius ϵ ≥ δ, we have

N (P, ϵ) ≤ N (P, δ).

Therefore, set b := max{bδ, N (P, δ)}, for all ϵ ∈ (δ, ϵ0] we have

N (P, ϵ) ≤ b ϵ−deff . (E3-5)

Likewise for V , the following holds N (V, ϵ) ≤ b′ ϵ−deff , ∀ ϵ ∈ (δ, ϵ0].

Step 4. Combine the bounds.

Based on (E3-4) and (E3-5), for all ϵ ∈ (δ, ϵ0] the following holds

a ϵ−deff ≤ N (P, ϵ) ≤ b ϵ−deff , a′ ϵ−deff ≤ N (V, ϵ) ≤ b′ ϵ−deff .

This completes the proof.

27



E.4 Proof of Theorem 1

Restatement of Theorem 1 (Trade-off between Prompt Alignment and Visual Preservation). Un-
der Assumption 2 and the covering-regularity hypothesis of Lemma 3 with constants a, a′, deff > 0,
there exist a radius-scaling factor z > 1 such that η/z > δ and K < N (P, η/z) +N (V, η/z), for
every pruning results S = (Sp ⊔ Sv) ⊆ V with budget K satisfying

max
{
D1K

−2/deff , D2 η
2
}
≤ dH(Sp,P) dH(Sv,V),

where D1 := (a a′)1/deff 41/deff > 0, D2 := 1/z2 > 0.

Remark (Optimal Attainment Level). The term D1 K
−2/deff is completely determined by the pruning

budget, while D2 η
2 quantifies the effect of prompt-visual coupling. Hence, the optimal attainment

level per objective is given by ϵ∗ = max{η/z,
√
D1 K

−1/deff}. Any attempt to reduce one objective
below ϵ∗ forces the other above ϵ∗, thereby increasing the overall pruning error.
Remark (Effect of Budget and Coupling Strength). As K decreases, z correspondingly shrinks (D2

growing as a power function), ultimately making D2 η
2 dominate the bound; while as K increases,

both of the terms reduce, thereby diminishing the trade-off and tightening the overall error bound.

Proof. We begin the proof by noting

ϵp = dH(Sp,P), ϵv = dH(Sv,V), Kp = |Sp|, Kv = |Sv|, Kp +Kv = K.

Step 1. Quantify the impact of budget K.

By Lemma 3, for all ϵp, ϵv ∈ (δ, ϵ0], we have

a ϵ−deff
p ≤ N (P, ϵp) ≤ Kp, a′ ϵ−deff

v ≤ N (V, ϵv) ≤ Kv. (E4-1)

By AM-GM inequality, we have KpKv ≤
(
K
2

)2
; thus, loading (E4-1) we have

(a a′) (ϵp ϵv)
−deff ≤

(
K
2

)2

=⇒ ϵp ϵv ≥ (a a′)1/deff 41/deff K−2/deff .

Define D1 := (a a′)1/deff 41/deff > 0, the K-bound is established by

ϵp ϵv ≥ D1 K
−2/deff . (E4-2)

Step 2. Quantify the impact of prompt-visual coupling η.

Based on the budget condition, the radius-scaling factor z holds

K < N
(
P, η

z

)
+N

(
V, η

z

)
. (E4-3)

For contradiction, we suppose two covering radii is simultaneously small, such that ϵp < η/z and
ϵv < η/z. Then, the monotonicity of covering numbers gives

N (P, ϵp) ≥ N
(
P, η

z

)
, N (V, ϵv) ≥ N

(
V, η

z

)
.

Hence
K ≥ N (P, ϵp) +N (V, ϵv) ≥ N

(
P, η

z

)
+N

(
V, η

z

)
,

contradicting (E4-3). Therefore at least one of ϵp, ϵv is ≥ η/z. Consequently

ϵp ϵv ≥
(

η
z

)2

,

Define D2 := 1
z2 > 0, the η-bound is given by

ϵp ϵv ≥ D2 η
2. (E4-4)

Step 3. Combine the impacts.

By (E4-2) and (E4-4), we have

ϵpϵv ≥ D1K
−2/deff and ϵpϵv ≥ D2η

2 =⇒ ϵp ϵv ≥ max
{
D1K

−2/deff , D2η
2
}
.

This completes the proof.
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E.5 Proof of Theorem 2

Restatement of Theorem 2 (Performance Guarantee). Under Assumption 1 and the covering-
regularity of Lemma 3 with constants a, a′, deff >0 and b>a, b′>a′, for any budget split (Kp, K −
Kp), covering fold k, and token set X = V ⊔ P ⊆ Rd with |V| = N , |P| = L, and dH(V,P) ≤ η,
the following hold:

(a) Performance bound: The Performance degradation caused by MoB is upper bounded by

∥F(X )−F(MoB(X ))∥ ≤ Cℓ max
{
α(η, k, L) (Kp)

−1/deff , β (K −Kp)
−1/deff

}
+ Cℓ η,

where α(η, k, L) = η
(
b k L/a

)1/deff , β = 2(b′)1/deff .

(b) Multilinear complexity: The complexity of MoB is given by TMoB = O(N (L+K) d).

Remark (Coupling Trade-off). Under weak coupling (large α(η, k, L)), minimizing the bound
requires a larger Kp. Conversely, under strong coupling (small α(η, k, L)), the alignment term decays
rapidly, favoring visual preservation (increasing K −Kp). Specially, under perfect coupling (η = 0),
the bound simplifies to ∥∆y∥ ≤ Cℓ β (K −Kp)

−1/deff ,i.e., MoB reduces to pure visual preservation.
Remark (Budget Scaling). As the total budget K increases, the preservation term β (K −Kp)

−1/deff

decays, requiring a corresponding increase in Kp (and thus a reduction in the alignment term) to
rebalance the trade-off and further lower the overall error bound.
Remark (Scalability). MoB exhibits a multilinear scalability with respect to visual tokens N , prompt
tokens L, and retained tokens K (especially K,L ≪ N ), making it readily adaptable to more
challenging scenarios, such as advanced MLLMs with higher-resolution inputs or multi-frame video.

Notation.

• The intermediate input X is formulated as

X = V ⊔ P ⊆ Rd where |V| = N, |P| = L, and N ≫ L.

Particularly, V , P are compact sets with deff effective dimensions.
• We define the pruned intermediate input as

MoB(X ) := Xs, where Xs = S ⊔ P where |S| = K.

• The budget configuration is given by ⟨Kp,Kv⟩, where Kp +Kv = K.

Proof. We separately proof the Performance Guarantee & Complexity in Part A & Part B

Part A: Performance Guarantee

Part A-1: Performance Guarantee of prompt alignment

Step A-1.1: Bound of the radius derived by k-fold NN-covering

Given any union set before Kp-truncation

S ′p :=
⋃
p∈P

arg top-k
sp∈V

(cos(sp, p), k) where |S ′p| = K ′
p and Kp ≤ K ′

p ≤ kL,

we define
ϵ′p = dH

(
S ′p, P

)
.

By previous work [13], NN-covering achieves a 1-approximation for the k-center problem with
sufficient budget; i.e., specifically for any p ∈ P we have

inf
s′p∈S′

p

∥p− s′p∥ = inf
v∈V
∥p− v∥.

Thus,
sup
p∈P

inf
s′p∈S′

p

∥p− s′p∥ = sup
p∈P

inf
v∈V
∥p− v∥.
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Based on Assumption 2, since s ∈ S ′p ⊆ V , the upper bound of the radius ϵ′p is given by

ϵ′p = dH
(
S ′p, P

)
:= max{ sup

s′p∈S′
p

inf
p∈P
∥p− s′p∥, sup

p∈P
inf

s′p∈S′
p

∥p− s′p∥}

≤ max{sup
v∈V

inf
p∈P
∥p− v∥, sup

p∈P
inf
v∈V
∥p− s′p∥}

:= dH
(
V, P

)
≤ η.

(E5-1)

Step A-1.2: Impact of Kp-truncation on the radius

Based on Lemma 3, we have
ar−deff ≤ N (P, r) ≤ b r−deff .

In particular:

b (ϵp)
−deff ≥ Kp =⇒ ϵp ≤

(
b

Kp

)1/deff

.

and also

a (ϵ′p)
−deff ≤ K ′

p =⇒ ϵ′p ≥
(

a
K′

p

)1/deff

.

Combining the upper and lower bound for ϵp and ϵ′p, respectively in terms of b,Kp,K
′
p, we obtain

ϵp ≤
(

b
Kp

)1/deff

=
(

bK′
p

aKp

)1/deff

·
(

a
K′

p

)1/deff

≤
(

bK′
p

aKp

)1/deff

ϵ′p.

That is, truncating from K ′
p to Kp centers increases the radius by at most the factor

ϵp ≤
(
bK ′

p/aKp

)1/deff ϵ′p.

Since kL ≥ K ′
p, loading into above, we have

ϵp ≤
(
bkL/aKp

)1/deff ϵ′p.

By loading (E5-1) into the above, the performance guarantee of prompt alignment is given by

ϵp := dH
(
Sp, P

)
≤ α(η, k, L) (Kp)

−1/deff where α(η, k, L) := η
(
bkL/a

)1/deff . (E5-2)

Part A-2: Performance Guarantee of Visual Preservation

By previous work [33], FPS achieves a 2-approximation for the k-center problem:

ϵv ≤ 2 ϵ⋆(Kv), (E5-3)

where ϵ⋆(Kv) is the optimal radius with Kv centers. Based on Lemma 3, we have

N (V, r) ≤ b′ r−deff ,

thereby, the upper bound of optimal radius is given by

ϵ⋆(Kv) ≤ (b′/Kv)
1/deff .

By loading the above into (E5-3), the performance guarantee of visual preservation is given by

ϵv := dH(Sv,V) ≤ β (Kv)
−1/deff , where β := 2 b′

1/deff . (E5-4)

Part A-3: Performance Guarantee of MoB

By substituting (E5-2) and (E5-4) into Lemma 2, the performance guarantee of the MoB is given by:

∥F(X )−F(MoB(X ))∥ ≤ Cℓ max
{
α(η, k, L) (Kp)

−1/deff , β (Kv)
−1/deff

}
+ Cℓ η,

where α(η, k, L) = η
(
b k L/a

)1/deff , β = 2 b′
1/deff .

This completes the proof of Part A.
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Part B: Complexity

Since k ≪ Kp ≤ K ∼ L≪ N , we restrict our complexity analysis to the leading-order terms.

Part B-1: Normalization

MoB do a L2 normalization for each token x ∈ X ⊆ Rd; thus, the complexity is given by
Tnorm = O((N + L) d). (E5-5)

Part B-2: Selection of Prompt Center

Firstly, MoB calculates the cosine similarity with each p ∈ P and v ∈ V via a matrix multiplication:
Msim = PV⊤ ∈ RL×N where V ∈ RN×d and P ∈ RL×d,

which leads a complexity of Tstep 1-1 = O(N Ld). Subsequent, MoB do a top-k retrieval in the first
dimension of Msim the select k most closed centers for each prompt token p ∈ P , which can be
reduced to a partial sorting, thereby leading to a complexity of Tstep 1-2 = O(N L log k). Finally,
MoB merge the selected result of each p ∈ P , and truncated the top-Kp ones with largest similarity,
leading to a Tstep 1-3 = O(Lk logKp). Consequently, the total complexity Tp-select of prompt
center selection is given by:

Tp-select = Tstep 1-1 + Tstep 1-2 + Tstep 1-3,
= O(N Ld) +O(N L log k) +O(Lk logKp),

= O(N Ld).

(E5-6)

Part B-3: Selection of Visual Center

Initially, MoB calculates the minimum distance (used in FPS) with each visual token v ∈ V\Sp := V ′

and the selected prompt centers via a matrix multiplication together with an argmin operator:
dFPS = argminV′⊤ Sp ∈ RN−Kp where V′ ∈ R(N−Kp)×d and Sp ∈ RKp×d,

thus, the complexity is given by
Tstep 2-1 = O((N −Kp)Kp d)︸ ︷︷ ︸

matrix multiplication

+O((N −Kp)Kp)︸ ︷︷ ︸
argmin

,

= O((N −Kp)Kp d).

Subsequently, in K −Kp iterations, MoB add the tokens with largest minimum distance with an
argmax operator in dFPS, and update the dFPS with an inner production together with an N −Kp-
dimensional element-wise comparison; thus the complexity is given by

Tstep 2-2 = O((N −Kp)(K −Kp))︸ ︷︷ ︸
argmax

+O((K −Kp)N d)︸ ︷︷ ︸
inner productioin

+ O((K −Kp) d)︸ ︷︷ ︸
ele−wise comparision

,

= O((K −Kp)N d).

Consequently, the total complexity Tv-select of visual center selection is given by:
Tv-select = Tstep 2-1 + Tstep 2-2,

= O((N −Kp)Kp d) +O((K −Kp)N d),

= O(N K d).

(E5-7)

Part B-4: Totally complexity

By (E5-5), (E5-6) and (E5-7), the totally complexity of MoB is given by
TMoB = Tnorm + Tp-select + Tv-select,

= O((N + L) d) +O(N Ld) +O(N K d),

= O(N Ld) +O(N K d),

= O(N (L+K) d).

This completes the proof of Part B.

Combining the Part A & B, we complete the proof.
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